MESON: A Mobility-Aware Dependent Task Offloading Scheme for Urban Vehicular Edge Computing

计算机科学 任务(项目管理) 计算 GSM演进的增强数据速率 移动边缘计算 方案(数学) 理论计算机科学 算法 人工智能 数学 工程类 数学分析 系统工程
作者
Liang Zhao,Enchao Zhang,Shaohua Wan,Ammar Hawbani,Ahmed Al‐Dubai,Geyong Min,Albert Y. Zomaya
出处
期刊:IEEE Transactions on Mobile Computing [IEEE Computer Society]
卷期号:23 (5): 4259-4272 被引量:50
标识
DOI:10.1109/tmc.2023.3289611
摘要

Vehicular Edge Computing (VEC) is the transportation version of Mobile Edge Computing (MEC) in road scenarios. One key technology of VEC is task offloading, which allows vehicles to send their computation tasks to the surrounding Roadside Units (RSUs) or other vehicles for execution, thereby reducing computation delay and energy consumption. However, the existing task offloading schemes still have various gaps and face challenges that should be addressed because vehicles with time-varying trajectories need to process massive data with high complexity and diversity. In this paper, a VEC-based computation offloading model is developed with consideration of data dependency of tasks. The minimization of the average response time and average energy consumption of the system is defined as a combinatorial optimization problem. To solve this problem, we propose a M obility-aware d e pendent ta s k o ffloadi n g (MESON) Scheme for urban VEC and develop a DRL-based algorithm to train the offloading strategy. To improve the training efficiency, a vehicle mobility detection algorithm is further designed to detect the communication time between vehicles and RSUs. In this way, MESON can avoid unreasonable decisions by lowering the size of the action space. Moreover, to improve the system stability and the offloading successful rate, we design a task priority determination scheme to prioritize the tasks in the waiting queue. The experimental results show that MESON is superior compared to other task offloading schemes in terms of the average response time, average system energy consumption, and offloading successful rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助小方采纳,获得10
1秒前
拾寒完成签到,获得积分10
1秒前
PIKACHU发布了新的文献求助10
1秒前
arielice完成签到,获得积分10
3秒前
寻梦完成签到,获得积分0
4秒前
勇者先享受生活完成签到 ,获得积分10
4秒前
4秒前
央央完成签到,获得积分10
5秒前
322628完成签到,获得积分10
5秒前
大俊哥发布了新的文献求助10
5秒前
PIKACHU完成签到,获得积分10
7秒前
ee完成签到,获得积分20
7秒前
充电宝应助正直的千柔采纳,获得10
8秒前
科研通AI5应助坚定的迎波采纳,获得10
9秒前
10秒前
10秒前
老坛酸菜关注了科研通微信公众号
10秒前
友好的储发布了新的文献求助10
11秒前
qpdxj关注了科研通微信公众号
12秒前
13秒前
就酱发布了新的文献求助20
13秒前
15秒前
传奇3应助naturehome采纳,获得10
16秒前
犹豫明雪发布了新的文献求助10
17秒前
flypipidan完成签到,获得积分10
17秒前
科研通AI5应助7123采纳,获得30
17秒前
18秒前
18秒前
虚心烨磊完成签到,获得积分20
19秒前
19秒前
Bruce Lin发布了新的文献求助10
19秒前
20秒前
shuaiBsen完成签到,获得积分10
21秒前
望除举报求知求助涉嫌违规
22秒前
Holland应助科研通管家采纳,获得20
22秒前
SYLH应助科研通管家采纳,获得10
22秒前
SYLH应助科研通管家采纳,获得10
22秒前
SYLH应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得10
22秒前
田様应助科研通管家采纳,获得10
22秒前
高分求助中
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Methods and Applications of Geochronology 200
An Integrated Solution for Application of Next-Generation Sequencing in Newborn Screening 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831787
求助须知:如何正确求助?哪些是违规求助? 3373901
关于积分的说明 10482367
捐赠科研通 3093826
什么是DOI,文献DOI怎么找? 1703081
邀请新用户注册赠送积分活动 819287
科研通“疑难数据库(出版商)”最低求助积分说明 771399