Privacy-Preserving Federated Learning Against Label-Flipping Attacks on Non-IID Data

计算机科学 同态加密 上传 明文 加密 班级(哲学) 信息隐私 计算机网络 独立同分布随机变量 数据挖掘 协议(科学) 计算机安全 人工智能 随机变量 操作系统 病理 统计 医学 替代医学 数学
作者
Xicong Shen,Ying Liu,Li Fu,Chunguang Li
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (1): 1241-1255 被引量:13
标识
DOI:10.1109/jiot.2023.3288886
摘要

Federated learning (FL) has attracted widespread attention in the Internet of Things domain recently. With FL, multiple distributed devices can cooperatively train a global model by transmitting model updates without disclosing the original data. However, the distributed nature of FL makes it vulnerable to data poisoning attacks. In practice, malicious clients can launch the label-flipping attack (LFA) by simply tampering with the labels of local data, thus causing the global model to misclassify the samples of a selected class as the target class. Although some defense mechanisms have been proposed, they rely on specific assumptions about data distribution, and their performance degrades significantly when the data on clients are non-IID. Besides, most existing methods require clients to upload model updates in plaintext so that the server can identify and remove the malicious updates. But, direct transmission of model updates may still reveal private information. Considering these issues, we develop a label-flipping-robust and privacy-preserving FL (LFR-PPFL) algorithm, which is applicable to both independent and identically distributed (IID) and non-IID data. We first propose a detection method based on temporal analysis on cosine similarity to distinguish malicious clients from benign clients. Then, we propose a privacy-preserving computation protocol based on homomorphic encryption to implement this detection method and perform federated aggregation while protecting the privacy of clients. Besides, a detailed theoretical analysis is given to demonstrate the privacy guarantee of the proposed protocol. Experimental results on real-world data sets show that the proposed algorithm can effectively defend against LFAs under various data distributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
小叶间静脉完成签到,获得积分10
2秒前
2秒前
苦行僧完成签到,获得积分10
3秒前
xz发布了新的文献求助10
3秒前
4秒前
sopha完成签到,获得积分10
4秒前
海马成长痛完成签到,获得积分10
4秒前
华仔应助glzh123采纳,获得10
5秒前
CentiM发布了新的文献求助10
5秒前
yizhiGao完成签到,获得积分10
6秒前
6秒前
次我完成签到,获得积分10
7秒前
冷静远望发布了新的文献求助10
7秒前
笑点低的靖仇关注了科研通微信公众号
7秒前
9秒前
9秒前
大学生发布了新的文献求助20
10秒前
zhongwei2284完成签到,获得积分10
10秒前
11秒前
11秒前
一一应助丫丫采纳,获得10
13秒前
紫菜完成签到,获得积分10
13秒前
趣多多发布了新的文献求助10
13秒前
切咖啡发布了新的文献求助10
14秒前
sarah完成签到,获得积分10
14秒前
yelis发布了新的文献求助10
14秒前
徐徐发布了新的文献求助10
15秒前
李昆朋完成签到,获得积分10
15秒前
李爱国应助wangwei采纳,获得10
16秒前
sugar发布了新的文献求助10
16秒前
16秒前
17秒前
17秒前
18秒前
18秒前
Hello应助zcl采纳,获得20
18秒前
pigeon完成签到,获得积分10
19秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947469
求助须知:如何正确求助?哪些是违规求助? 3492682
关于积分的说明 11066299
捐赠科研通 3223567
什么是DOI,文献DOI怎么找? 1781557
邀请新用户注册赠送积分活动 866373
科研通“疑难数据库(出版商)”最低求助积分说明 800332