Prediction of synchronous distant metastasis of primary pancreatic ductal adenocarcinoma using the radiomics features derived from 18F-FDG PET and MRI

医学 列线图 无线电技术 磁共振成像 胰腺导管腺癌 放射科 正电子发射断层摄影术 转移 接收机工作特性 单变量分析 核医学 多元分析 肿瘤科 胰腺癌 内科学 癌症
作者
Jing Gao,Yongrui Bai,Fei Miao,Xin‐Yun Huang,Markus Schwaiger,Axel Rominger,Binghao Li,Hongbo Zhu,Xiaozhu Lin,Kuangyu Shi
出处
期刊:Clinical Radiology [Elsevier BV]
卷期号:78 (10): 746-754 被引量:3
标识
DOI:10.1016/j.crad.2023.06.011
摘要

•PET/MRI radiomics can predict metastasis in pancreatic ductal adenocarcinoma. •The model developed on PET/CT and MRI features works on the integrated PET/MR. •Nomogram combining radiomics and clinical parameters enhances the performance. AIM To explore the potential of the joint radiomics analysis of positron-emission tomography (PET) and magnetic resonance imaging (MRI) of primary tumours for predicting the risk of synchronous distant metastasis (SDM) in patients with pancreatic ductal adenocarcinoma (PDAC). MATERIALS AND METHODS 18F-FDG PET and MRI images of PDAC patients from January 2011 to December 2020 were collected retrospectively. Patients (n=66) who received 18F-FDG PET/CT and MRI were included in a development group. Patients (n=25) scanned with hybrid PET/MRI were incorporated in an external test group. A radiomics signature was constructed using the least absolute shrinkage and selection operator algorithm to select PET-MRI radiomics features of primary PDAC tumours. A radiomics nomogram was developed by combining the radiomics signature and important clinical indicators using univariate and multivariate analysis to assess patients' metastasis risk. The nomogram was verified with the employment of an external test group. RESULTS Regarding the development cohort, the radiomics nomogram was found to be better for predicting the risk of distant metastasis (area under the curve [AUC]: 0.93, sensitivity: 87%, specificity: 85%) than the clinical model (AUC: 0.70, p<0.001; sensitivity:70%, specificity: 65%) and the radiomics signature (AUC: 0.89, p>0.05; sensitivity: 65%, specificity:100%). Concerning the external test cohort, the radiomics nomogram yielded an AUC of 0.85. CONCLUSION PET-MRI based radiomics analysis exhibited effective prediction of the risk of SDM for preoperative PDAC patients and may offer complementary information and provide hints for cancer staging. To explore the potential of the joint radiomics analysis of positron-emission tomography (PET) and magnetic resonance imaging (MRI) of primary tumours for predicting the risk of synchronous distant metastasis (SDM) in patients with pancreatic ductal adenocarcinoma (PDAC). 18F-FDG PET and MRI images of PDAC patients from January 2011 to December 2020 were collected retrospectively. Patients (n=66) who received 18F-FDG PET/CT and MRI were included in a development group. Patients (n=25) scanned with hybrid PET/MRI were incorporated in an external test group. A radiomics signature was constructed using the least absolute shrinkage and selection operator algorithm to select PET-MRI radiomics features of primary PDAC tumours. A radiomics nomogram was developed by combining the radiomics signature and important clinical indicators using univariate and multivariate analysis to assess patients' metastasis risk. The nomogram was verified with the employment of an external test group. Regarding the development cohort, the radiomics nomogram was found to be better for predicting the risk of distant metastasis (area under the curve [AUC]: 0.93, sensitivity: 87%, specificity: 85%) than the clinical model (AUC: 0.70, p<0.001; sensitivity:70%, specificity: 65%) and the radiomics signature (AUC: 0.89, p>0.05; sensitivity: 65%, specificity:100%). Concerning the external test cohort, the radiomics nomogram yielded an AUC of 0.85. PET-MRI based radiomics analysis exhibited effective prediction of the risk of SDM for preoperative PDAC patients and may offer complementary information and provide hints for cancer staging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
花心超人发布了新的文献求助10
1秒前
华仔应助祝你勇敢采纳,获得10
2秒前
共享精神应助祝你勇敢采纳,获得10
2秒前
Orange应助祝你勇敢采纳,获得10
2秒前
赘婿应助祝你勇敢采纳,获得10
2秒前
2秒前
花城完成签到,获得积分10
2秒前
2秒前
可爱的函函应助鲸鱼采纳,获得10
3秒前
李健应助diupapa采纳,获得10
3秒前
ln177发布了新的文献求助10
4秒前
lt完成签到,获得积分10
4秒前
司空乞完成签到 ,获得积分10
4秒前
心心完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
顺利小鸽子完成签到,获得积分10
6秒前
李爱国应助Rylynn采纳,获得10
7秒前
蒲蒲发布了新的文献求助10
8秒前
迷雾完成签到,获得积分10
9秒前
9秒前
9秒前
完美元柏完成签到,获得积分10
10秒前
kewell发布了新的文献求助10
10秒前
Cheng完成签到 ,获得积分10
11秒前
心心发布了新的文献求助10
11秒前
11秒前
诚心中恶完成签到,获得积分20
11秒前
12秒前
cdercder应助林儿采纳,获得10
13秒前
安安完成签到 ,获得积分10
13秒前
14秒前
suohaiyun完成签到,获得积分10
14秒前
辛勤雅容发布了新的文献求助10
14秒前
淘气科研完成签到,获得积分10
14秒前
14秒前
笨笨醉薇发布了新的文献求助10
14秒前
英姑应助ln177采纳,获得10
15秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842080
求助须知:如何正确求助?哪些是违规求助? 3384261
关于积分的说明 10533503
捐赠科研通 3104566
什么是DOI,文献DOI怎么找? 1709737
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773970