Fusion-based tensor radiomics using reproducible features: Application to survival prediction in head and neck cancer

无线电技术 人工智能 预处理器 随机森林 计算机科学 正电子发射断层摄影术 模式识别(心理学) 组内相关 主成分分析 机器学习 医学 核医学 数学 统计 心理测量学
作者
Mohammad R. Salmanpour,Mahdi Hosseinzadeh,Seyed Masoud Rezaeijo,Arman Rahmim
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:240: 107714-107714 被引量:38
标识
DOI:10.1016/j.cmpb.2023.107714
摘要

Numerous features are commonly generated in radiomics applications as applied to medical imaging, and identification of robust radiomics features (RFs) can be an important step to derivation of reliable, reproducible solutions. In this work, we utilize a tensor radiomics (TR) framework, where numerous fusions are explored, to generate different flavours of RFs, and we aimed to identify RFs that are robust to fusion techniques in head and neck cancer. Overall, we aimed to predict progression-free survival (PFS) using Hybrid Machine Learning Systems (HMLS) and reproducible RFs. The study was performed on 408 patients with head and neck cancer from The Cancer Imaging Archive. After image preprocessing, 15 fusion techniques were employed to combine Positron Emission Tomography (PET) and Computed Tomography (CT) images. Subsequently, 215 RFs were extracted through a standardized radiomics software, with 17 ‘flavours’ generated using PET-only, CT-only, and 15 fused PET&CT images. The variability of RFs across flavours was studied using the Intraclass Correlation Coefficient (ICC). Furthermore, the features were categorized into seven reliability groups, 106 reproducible RFs with ICC>0.75 were selected, highly correlated flavours were removed, Principal Component Analysis was used to convert 17 flavours to 1 attribute, the polynomial function was utilized to increase RFs, and Analysis of variance (ANOVA) was used to select the relevant attributes. Finally, 3 classifiers including Random Forest (RFC), Logistic regression (LR), and Multi-layer perceptron were applied to the preselected relevant attributes to predict binary PFS. In 5-fold cross-validation, 80% of 4 divisions were utilized to train the model, and the remaining 20% was utilized to evaluate the model. Further, the remaining fold was used for external nested testing. Reliability analysis indicated that most morphological features belong to the high-reliability category. By contrast, local intensity and statistical features extracted from images belong to the low-reliability category. In the tensor framework, the highest 5-fold cross-validation accuracy of 76.7%±3.3% with an external nested testing of 70.6%±6.7% resulted from the reproducible TR+polynomial function+ANOVA+LR algorithm while the accuracy of 70.0%±4.2% with the external nested testing of 67.7%±4.9% was achieved through the PCA fusion+RFC (non-tensor paradigm). This study demonstrated that using reproducible RFs as utilized within a tensor fusion radiomics framework, linked with ANOVA and LR, added value to prediction of progression-free survival outcome in head and neck cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jr L发布了新的文献求助10
3秒前
解惑发布了新的文献求助10
4秒前
cyy发布了新的文献求助10
5秒前
7秒前
Orange应助DJDJ采纳,获得10
8秒前
GRG完成签到 ,获得积分10
9秒前
sunday2024完成签到,获得积分10
9秒前
12秒前
12秒前
帅不屈服发布了新的文献求助10
12秒前
充电宝应助Charlie采纳,获得10
12秒前
李健的粉丝团团长应助li采纳,获得10
14秒前
Freya应助鹿谷波采纳,获得10
16秒前
00发布了新的文献求助10
17秒前
18秒前
18秒前
帅不屈服完成签到,获得积分10
18秒前
美满胜发布了新的文献求助10
19秒前
遇上就这样吧应助FIN采纳,获得50
19秒前
19秒前
Thien应助李小汁采纳,获得10
22秒前
DJDJ发布了新的文献求助10
23秒前
sivan完成签到,获得积分10
23秒前
豪杰发布了新的文献求助10
25秒前
Hello应助正直的魔镜采纳,获得10
26秒前
26秒前
固的曼发布了新的文献求助50
27秒前
kid1412完成签到 ,获得积分10
28秒前
彭于晏应助Jr L采纳,获得10
31秒前
31秒前
31秒前
美满的机器猫完成签到,获得积分10
32秒前
在在在在在在1完成签到,获得积分20
32秒前
科研通AI5应助guan采纳,获得10
33秒前
刻苦的麦片完成签到,获得积分10
34秒前
35秒前
成功发布了新的文献求助10
35秒前
35秒前
36秒前
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3783306
求助须知:如何正确求助?哪些是违规求助? 3328584
关于积分的说明 10237387
捐赠科研通 3043770
什么是DOI,文献DOI怎么找? 1670643
邀请新用户注册赠送积分活动 799811
科研通“疑难数据库(出版商)”最低求助积分说明 759130