Large-scale Detection of Marine Debris in Coastal Areas with Sentinel-2

海洋废弃物 碎片 环境科学 遥感 海洋污染 采样(信号处理) 塑料污染 比例(比率) 污染 计算机科学 海洋学 探测器 生态学 地理 地质学 地图学 电信 生物
作者
Marc Rußwurm,Sushen Jilla Venkatesa,Devis Tuia
出处
期刊:Cornell University - arXiv 被引量:1
标识
DOI:10.48550/arxiv.2307.02465
摘要

Detecting and quantifying marine pollution and macro-plastics is an increasingly pressing ecological issue that directly impacts ecology and human health. Efforts to quantify marine pollution are often conducted with sparse and expensive beach surveys, which are difficult to conduct on a large scale. Here, remote sensing can provide reliable estimates of plastic pollution by regularly monitoring and detecting marine debris in coastal areas. Medium-resolution satellite data of coastal areas is readily available and can be leveraged to detect aggregations of marine debris containing plastic litter. In this work, we present a detector for marine debris built on a deep segmentation model that outputs a probability for marine debris at the pixel level. We train this detector with a combination of annotated datasets of marine debris and evaluate it on specifically selected test sites where it is highly probable that plastic pollution is present in the detected marine debris. We demonstrate quantitatively and qualitatively that a deep learning model trained on this dataset issued from multiple sources outperforms existing detection models trained on previous datasets by a large margin. Our experiments show, consistent with the principles of data-centric AI, that this performance is due to our particular dataset design with extensive sampling of negative examples and label refinements rather than depending on the particular deep learning model. We hope to accelerate advances in the large-scale automated detection of marine debris, which is a step towards quantifying and monitoring marine litter with remote sensing at global scales, and release the model weights and training source code under https://github.com/marccoru/marinedebrisdetector

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
搜集达人应助sxp1031采纳,获得10
4秒前
5秒前
7秒前
8秒前
yn完成签到 ,获得积分10
9秒前
10秒前
结实的青荷完成签到,获得积分10
10秒前
H_dd发布了新的文献求助10
12秒前
maclogos发布了新的文献求助10
12秒前
leeSongha完成签到 ,获得积分10
13秒前
仁爱钢笔完成签到 ,获得积分10
13秒前
14秒前
Akim应助钠钾蹦采纳,获得10
15秒前
小田发布了新的文献求助30
16秒前
疯狂的依波完成签到,获得积分10
18秒前
20秒前
艾瑞克完成签到,获得积分10
23秒前
26秒前
小小鱼完成签到,获得积分10
28秒前
李爱国应助maclogos采纳,获得10
28秒前
zzZ5完成签到,获得积分10
29秒前
30秒前
zzZ5发布了新的文献求助10
31秒前
31秒前
34秒前
meixinhu发布了新的文献求助10
35秒前
35秒前
35秒前
fff完成签到 ,获得积分10
36秒前
叉叉茶完成签到 ,获得积分10
36秒前
钠钾蹦发布了新的文献求助10
36秒前
qiao应助zhangzheng采纳,获得10
37秒前
是是是WQ完成签到 ,获得积分0
39秒前
xwtx发布了新的文献求助10
39秒前
fanzi完成签到 ,获得积分10
42秒前
今后应助lemon 1118采纳,获得10
44秒前
lucky完成签到 ,获得积分10
45秒前
YCH发布了新的文献求助10
47秒前
HuSP完成签到,获得积分10
47秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779743
求助须知:如何正确求助?哪些是违规求助? 3325186
关于积分的说明 10221815
捐赠科研通 3040328
什么是DOI,文献DOI怎么找? 1668715
邀请新用户注册赠送积分活动 798775
科研通“疑难数据库(出版商)”最低求助积分说明 758535