提取器
人工智能
淋巴结转移
分类器(UML)
分割
医学
淋巴结
计算机科学
模式识别(心理学)
H&E染色
数字化病理学
组织病理学
深度学习
转移
放射科
癌症
病理
内科学
免疫组织化学
工程类
工艺工程
作者
You-Na Sung,Hyeseong Lee,Eunsu Kim,Woon Yong Jung,Jin-Hee Sohn,Yoo Jin Lee,Bora Keum,Sangjeong Ahn,Sung Hak Lee
摘要
In early gastric cancer (EGC), the presence of lymph node metastasis (LNM) is a crucial factor for determining the treatment options. Endoscopic resection is used for treatment of EGC with minimal risk of LNM. However, owing to the lack of definitive criteria for identifying patients who require additional surgery, some patients undergo unnecessary additional surgery. Considering that histopathologic patterns are significant factor for predicting lymph node metastasis in gastric cancer, we aimed to develop a machine learning algorithm which can predict LNM status using hematoxylin and eosin (H&E)-stained images. The images were obtained from several institutions. Our pipeline comprised two sequential approaches including a feature extractor and a risk classifier. For the feature extractor, a segmentation network (DeepLabV3+) was trained on 243 WSIs across three datasets to differentiate each histological subtype. The risk classifier was trained with XGBoost using 70 morphological features inferred from the trained feature extractor. The trained segmentation network, the feature extractor, achieved high performance, with pixel accuracies of 0.9348 and 0.8939 for the internal and external datasets in patch level, respectively. The risk classifier achieved an overall AUC of 0.75 in predicting LNM status. Remarkably, one of the datasets also showed a promising result with an AUC of 0.92. This is the first multi-institution study to develop machine learning algorithm for predicting LNM status in patients with EGC using H&E-stained histopathology images. Our findings have the potential to improve the selection of patients who require surgery among those with EGC showing high-risk histological features.
科研通智能强力驱动
Strongly Powered by AbleSci AI