MSA2Net: Multi-scale Adaptive Attention-guided Network for Medical Image Segmentation

比例(比率) 人工智能 计算机科学 分割 计算机视觉 图像(数学) 注意力网络 地理 地图学
作者
Sina Ghorbani Kolahi,S. Kamal Chaharsooghi,Toktam Khatibi,Afshin Bozorgpour,Reza Azad,Moein Heidari,Ilker Hacihaliloglu,Dorit Merhof
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2407.21640
摘要

Medical image segmentation involves identifying and separating object instances in a medical image to delineate various tissues and structures, a task complicated by the significant variations in size, shape, and density of these features. Convolutional neural networks (CNNs) have traditionally been used for this task but have limitations in capturing long-range dependencies. Transformers, equipped with self-attention mechanisms, aim to address this problem. However, in medical image segmentation it is beneficial to merge both local and global features to effectively integrate feature maps across various scales, capturing both detailed features and broader semantic elements for dealing with variations in structures. In this paper, we introduce MSA2Net, a new deep segmentation framework featuring an expedient design of skip-connections. These connections facilitate feature fusion by dynamically weighting and combining coarse-grained encoder features with fine-grained decoder feature maps. Specifically, we propose a Multi-Scale Adaptive Spatial Attention Gate (MASAG), which dynamically adjusts the receptive field (Local and Global contextual information) to ensure that spatially relevant features are selectively highlighted while minimizing background distractions. Extensive evaluations involving dermatology, and radiological datasets demonstrate that our MSA2Net outperforms state-of-the-art (SOTA) works or matches their performance. The source code is publicly available at https://github.com/xmindflow/MSA-2Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sdz关注了科研通微信公众号
1秒前
ppc完成签到,获得积分10
1秒前
2秒前
科目三应助卡拉蹦蹦采纳,获得10
3秒前
youyuguang发布了新的文献求助10
3秒前
xy发布了新的文献求助10
4秒前
明理汉堡关注了科研通微信公众号
5秒前
小二郎应助save采纳,获得10
5秒前
srryw完成签到,获得积分10
5秒前
Mly完成签到,获得积分10
6秒前
7秒前
zzb发布了新的文献求助30
7秒前
zjh完成签到 ,获得积分10
8秒前
8秒前
蜡笔小z完成签到 ,获得积分10
8秒前
科研小白白完成签到,获得积分10
9秒前
深情安青应助大白采纳,获得10
10秒前
风中沂完成签到 ,获得积分10
10秒前
科研通AI5应助岑夜南采纳,获得10
10秒前
12秒前
456221发布了新的文献求助10
12秒前
Xiaoxiao应助科研通管家采纳,获得10
13秒前
桐桐应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
VDC应助科研通管家采纳,获得30
13秒前
NexusExplorer应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
852应助科研通管家采纳,获得10
13秒前
乐乐应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
隐形曼青应助科研通管家采纳,获得10
13秒前
VDC应助科研通管家采纳,获得30
13秒前
orixero应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
14秒前
研友_VZG7GZ应助科研通管家采纳,获得10
14秒前
万能图书馆应助456221采纳,获得10
18秒前
18秒前
华仔应助沉默的板凳采纳,获得10
18秒前
传奇3应助Vicky采纳,获得10
19秒前
splash完成签到,获得积分10
22秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796537
求助须知:如何正确求助?哪些是违规求助? 3341751
关于积分的说明 10307672
捐赠科研通 3058381
什么是DOI,文献DOI怎么找? 1678151
邀请新用户注册赠送积分活动 805906
科研通“疑难数据库(出版商)”最低求助积分说明 762838