亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

LSTM-CRP: Algorithm-Hardware Co-Design and Implementation of Cache Replacement Policy Using Long Short-Term Memory

隐藏物 计算机科学 期限(时间) 缓存算法 并行计算 计算机硬件 CPU缓存 算法 嵌入式系统 量子力学 物理
作者
Yizhou Wang,Yishuo Meng,Jiaxing Wang,Chen Yang
出处
期刊:Big data and cognitive computing [Multidisciplinary Digital Publishing Institute]
卷期号:8 (10): 140-140 被引量:1
标识
DOI:10.3390/bdcc8100140
摘要

As deep learning has produced dramatic breakthroughs in many areas, it has motivated emerging studies on the combination between neural networks and cache replacement algorithms. However, deep learning is a poor fit for performing cache replacement in hardware implementation because its neural network models are impractically large and slow. Many studies have tried to use the guidance of the Belady algorithm to speed up the prediction of cache replacement. But it is still impractical to accurately predict the characteristics of future access addresses, introducing inaccuracy in the discrimination of complex access patterns. Therefore, this paper presents the LSTM-CRP algorithm as well as its efficient hardware implementation, which employs the long short-term memory (LSTM) for access pattern identification at run-time to guide cache replacement algorithm. LSTM-CRP first converts the address into a novel key according to the frequency of the access address and a virtual capacity of the cache, which has the advantages of low information redundancy and high timeliness. Using the key as the inputs of four offline-trained LSTM network-based predictors, LSTM-CRP can accurately classify different access patterns and identify current cache characteristics in a timely manner via an online set dueling mechanism on sampling caches. For efficient implementation, heterogeneous lightweight LSTM networks are dedicatedly constructed in LSTM-CRP to lower hardware overhead and inference delay. The experimental results show that LSTM-CRP was able to averagely improve the cache hit rate by 20.10%, 15.35%, 12.11% and 8.49% compared with LRU, RRIP, Hawkeye and Glider, respectively. Implemented on Xilinx XCVU9P FPGA at the cost of 15,973 LUTs and 1610 FF registers, LSTM-CRP was running at a 200 MHz frequency with 2.74 W power consumption.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助科研通管家采纳,获得30
9秒前
爆米花应助linnya采纳,获得10
29秒前
cossen完成签到 ,获得积分10
59秒前
1分钟前
1分钟前
1分钟前
激动的似狮完成签到,获得积分10
1分钟前
1分钟前
1分钟前
linnya发布了新的文献求助10
1分钟前
搜集达人应助linnya采纳,获得10
1分钟前
疯狂大泡芙完成签到,获得积分10
1分钟前
1分钟前
嗨害害发布了新的文献求助10
1分钟前
1分钟前
Ava应助柏特瑞采纳,获得10
1分钟前
JamesPei应助嗨害害采纳,获得10
1分钟前
嗨害害完成签到,获得积分20
2分钟前
2分钟前
小花排草应助科研通管家采纳,获得30
2分钟前
SciGPT应助科研通管家采纳,获得10
2分钟前
柏特瑞发布了新的文献求助10
2分钟前
激情的从云完成签到,获得积分10
2分钟前
2分钟前
2分钟前
Yixin发布了新的文献求助10
2分钟前
3分钟前
啦啦发布了新的文献求助30
3分钟前
linnya发布了新的文献求助10
3分钟前
满意的晓啸完成签到,获得积分10
3分钟前
3分钟前
Yixin完成签到,获得积分10
3分钟前
goldfish发布了新的文献求助10
3分钟前
3分钟前
miaolingcool发布了新的文献求助10
3分钟前
fantab01发布了新的文献求助10
3分钟前
3分钟前
mob发布了新的文献求助10
3分钟前
科研通AI5应助fantab01采纳,获得10
3分钟前
3分钟前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
镇江南郊八公洞林区鸟类生态位研究 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4162007
求助须知:如何正确求助?哪些是违规求助? 3697548
关于积分的说明 11674952
捐赠科研通 3388427
什么是DOI,文献DOI怎么找? 1858131
邀请新用户注册赠送积分活动 918831
科研通“疑难数据库(出版商)”最低求助积分说明 831695