亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic tumor segmentation and lymph node metastasis prediction in papillary thyroid carcinoma using ultrasound keyframes

医学 分割 放射科 甲状腺癌 接收机工作特性 人工智能 卷积神经网络 淋巴结 计算机科学 颈淋巴结 超声波 转移 甲状腺 癌症 内科学
作者
Xian‐Ya Zhang,Di Zhang,Zhiyuan Wang,Jun Chen,Jia‐Yu Ren,Ting Ma,Jianjun Lin,Christoph F. Dietrich,Xin‐Wu Cui
出处
期刊:Medical Physics [Wiley]
标识
DOI:10.1002/mp.17498
摘要

Abstract Background Accurate preoperative prediction of cervical lymph node metastasis (LNM) for papillary thyroid carcinoma (PTC) patients is essential for disease staging and individualized treatment planning, which can improve prognosis and facilitate better management. Purpose To establish a fully automated deep learning‐enabled model (FADLM) for automated tumor segmentation and cervical LNM prediction in PTC using ultrasound (US) video keyframes. Methods The bicentral study retrospective enrolled 518 PTC patients, who were then randomly divided into the training (Hospital 1, n = 340), internal test (Hospital 1, n = 83), and external test cohorts (Hospital 2, n = 95). The FADLM integrated mask region‐based convolutional neural network (Mask R‐CNN) for automatic thyroid primary tumor segmentation and ResNet34 with Bayes strategy for cervical LNM diagnosis. A radiomics model (RM) using the same automated segmentation method, a traditional radiomics model (TRM) using manual segmentation, and a clinical‐semantic model (CSM) were developed for comparison. The dice similarity coefficient (DSC) was used to evaluate segmentation performance. The prediction performance of the models was validated in terms of discrimination and clinical utility with the area under the receiver operator characteristic curve (AUC), heatmap analysis, and decision curve analysis (DCA). The comparison of the predictive performance among different models was conducted by DeLong test. The performances of two radiologists compared with FADLM and the diagnostic augmentation with FADLM's assistance were analyzed in terms of accuracy, sensitivity and specificity using McNemar's x 2 test. The p ‐value less than 0.05 was defined as a statistically significant difference. The Benjamini‐Hochberg procedure was applied for multiple comparisons to deal with Type I error. Results The FADLM yielded promising segmentation results in training (DSC: 0.88 ± 0.23), internal test (DSC: 0.88 ± 0.23), and external test cohorts (DSC: 0.85 ± 0.24). The AUCs of FADLM for cervical LNM prediction were 0.78 (95% CI: 0.73, 0.83), 0.83 (95% CI: 0.74, 0.92), and 0.83 (95% CI: 0.75, 0.92), respectively. It all significantly outperformed the RM (AUCs: 0.78 vs. 0.72; 0.83 vs. 0.65; 0.83 vs. 0.68, all adjusted p ‐values < 0.05) and CSM (AUCs: 0.78 vs. 0.71; 0.83 vs. 0.62; 0.83 vs. 0.68, all adjusted p ‐values < 0.05) across the three cohorts. The RM offered similar performance to that of TRM (AUCs: 0.61 vs. 0.63, adjusted p ‐value = 0.60) while significantly reducing the segmentation time (3.3 ± 3.8 vs. 14.1 ± 4.2 s, p ‐value < 0.001). Under the assistance of FADLM, the accuracies of junior and senior radiologists were improved by 18% and 15% (all adjusted p ‐values < 0.05) and the sensitivities by 25% and 21% (all adjusted p ‐values < 0.05) in the external test cohort. Conclusion The FADLM with elaborately designed automated strategy using US video keyframes holds good potential to provide an efficient and consistent prediction of cervical LNM in PTC. The FADLM displays superior performance to RM, CSM, and radiologists with promising efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
合适不愁完成签到,获得积分10
27秒前
小二郎应助野性的冰彤采纳,获得50
36秒前
慕青应助rrrrrrry采纳,获得20
42秒前
CipherSage应助rrrrrrry采纳,获得20
42秒前
汉堡包应助rrrrrrry采纳,获得10
42秒前
慕青应助rrrrrrry采纳,获得10
42秒前
47秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
落沧完成签到 ,获得积分10
54秒前
我是老大应助Ytgl采纳,获得10
54秒前
cicade发布了新的文献求助10
54秒前
烟花应助rrrrrrry采纳,获得30
1分钟前
1分钟前
赘婿应助rrrrrrry采纳,获得100
1分钟前
cicade完成签到,获得积分10
1分钟前
Lorain发布了新的文献求助10
1分钟前
洁净的士晋完成签到,获得积分10
1分钟前
小文子完成签到 ,获得积分10
1分钟前
烟花应助风风采纳,获得10
1分钟前
王_123123123123w完成签到 ,获得积分10
1分钟前
WerWu完成签到,获得积分10
1分钟前
1分钟前
Able完成签到,获得积分10
1分钟前
1分钟前
Akim应助fl采纳,获得10
1分钟前
隐形路灯完成签到 ,获得积分10
1分钟前
缓慢的灵枫完成签到 ,获得积分10
1分钟前
自信的半凡完成签到,获得积分20
1分钟前
贪玩的书雪完成签到,获得积分10
2分钟前
2分钟前
2分钟前
悄悄拔尖儿完成签到 ,获得积分10
2分钟前
Ytgl发布了新的文献求助10
2分钟前
fl发布了新的文献求助10
2分钟前
LJL完成签到 ,获得积分10
2分钟前
2分钟前
TT发布了新的文献求助30
2分钟前
2分钟前
ZhaoPeng完成签到,获得积分10
2分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780778
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226507
捐赠科研通 3041459
什么是DOI,文献DOI怎么找? 1669398
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758723