A Survey on Graph Neural Networks for Time Series: Forecasting, Classification, Imputation, and Anomaly Detection

异常检测 计算机科学 时间序列 人工智能 人工神经网络 图形 数据挖掘 机器学习 数据科学 理论计算机科学
作者
Ming Jin,Huan Yee Koh,Qingsong Wen,Daniele Zambon,Cesare Alippi,Geoffrey I. Webb,Irwin King,Shirui Pan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:46 (12): 10466-10485 被引量:243
标识
DOI:10.1109/tpami.2024.3443141
摘要

Time series are the primary data type used to record dynamic system measurements and generated in great volume by both physical sensors and online processes (virtual sensors). Time series analytics is therefore crucial to unlocking the wealth of information implicit in available data. With the recent advancements in graph neural networks (GNNs), there has been a surge in GNN-based approaches for time series analysis. These approaches can explicitly model inter-temporal and inter-variable relationships, which traditional and other deep neural network-based methods struggle to do. In this survey, we provide a comprehensive review of graph neural networks for time series analysis (GNN4TS), encompassing four fundamental dimensions: forecasting, classification, anomaly detection, and imputation. Our aim is to guide designers and practitioners to understand, build applications, and advance research of GNN4TS. At first, we provide a comprehensive task-oriented taxonomy of GNN4TS. Then, we present and discuss representative research works and introduce mainstream applications of GNN4TS. A comprehensive discussion of potential future research directions completes the survey. This survey, for the first time, brings together a vast array of knowledge on GNN-based time series research, highlighting foundations, practical applications, and opportunities of graph neural networks for time series analysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
丘比特应助xicifish采纳,获得10
刚刚
小五发布了新的文献求助10
1秒前
1秒前
YPYPYP83完成签到 ,获得积分10
2秒前
zzulyy完成签到,获得积分10
2秒前
三三四发布了新的文献求助20
2秒前
Clara应助miaomiao采纳,获得10
3秒前
pluto应助小魔王采纳,获得10
3秒前
情怀应助fighting采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
wp发布了新的文献求助10
4秒前
丫丫完成签到,获得积分10
4秒前
号行天下发布了新的文献求助10
4秒前
zy3637完成签到 ,获得积分10
5秒前
温茶青盏完成签到,获得积分10
5秒前
realityjunky完成签到,获得积分10
5秒前
传奇3应助飞兰采纳,获得10
6秒前
随波逐流应助皮皮怪采纳,获得10
6秒前
含蓄朝雪完成签到,获得积分10
6秒前
皮代谷完成签到,获得积分10
6秒前
doubleuz发布了新的文献求助10
7秒前
向晚发布了新的文献求助10
8秒前
Hebbe完成签到 ,获得积分10
8秒前
henrys1011发布了新的文献求助10
8秒前
专注背包发布了新的文献求助10
8秒前
departure完成签到,获得积分10
9秒前
m123发布了新的文献求助10
10秒前
pillzao完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
迷人的长颈鹿应助phenory采纳,获得10
11秒前
11秒前
Liang发布了新的文献求助10
11秒前
12秒前
李健应助卓隶采纳,获得10
12秒前
李爱国应助sparrow采纳,获得30
12秒前
訫乐发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5483592
求助须知:如何正确求助?哪些是违规求助? 4584269
关于积分的说明 14396042
捐赠科研通 4513982
什么是DOI,文献DOI怎么找? 2473769
邀请新用户注册赠送积分活动 1459777
关于科研通互助平台的介绍 1433192