EQ-5D-5L Population Scores in Mainland China: Results From a Nationally Representative Survey 2021

中国大陆 中国 大陆 环境卫生 china mainland 地理 人口 人口学 医学 社会经济学 社会学 考古
作者
Qiang Yao,Fei Yang,Xiaodan Zhang,Jiale Qi,Haomiao Li,Yibo Wu,Chaojie Liu
出处
期刊:Value in Health [Elsevier BV]
卷期号:27 (11): 1573-1584
标识
DOI:10.1016/j.jval.2024.06.012
摘要

Objectives There is a lack of monitoring changes in the population scores of the most recent version, EQ-5D-5L, in mainland China. This study aims to address this knowledge gap by assessing the EQ-5D-5L scores in mainland China using a nationally representative sample. Methods Data were extracted from the 2021 Survey of Health Index of Chinese Families, which covered 31 provinces/autonomous regions/municipalities in mainland China. The survey employed a multi-stage quota sampling strategy encompassing 120 prefecture-level cities. Quotas were allocated to each prefecture-level city in accordance with the 2020 China Population Census. This approach resulted in a final sample of 11,030 eligible questionnaires. The utility index and EQ Visual Analogue Scale (VAS) scores were reported for the entire sample (age-gender-urban/rural weighted) and by the characteristics of the study participants. Results The study participants had a weighted mean utility index of 0.939 (SD=0.135) and EQ VAS score of 80.19 (SD=18.39). The most commonly reported problem was anxiety/depression (26.37%), while self-care was the least reported problem (6.18%). Those who were male, younger, lived without chronic conditions and disabilities, had higher levels of education, earned higher monthly household income, and were covered by basic medical insurance for urban employees had higher scores in both the utility index and EQ VAS. Conclusion This study revealed slightly lower utility index scores despite a much higher drop in EQ VAS scores while China maintained minimum cases of COVID-19 in 2021 compared to the population norms recorded in 2019. Further studies are warranted to unveil the full impacts of COVID-19 outbreaks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
cxdhxu发布了新的文献求助10
1秒前
图雄争霸完成签到 ,获得积分10
1秒前
Lucas应助zzx采纳,获得10
2秒前
浮生完成签到 ,获得积分10
2秒前
我是老大应助JimmyFun采纳,获得10
2秒前
Lilya发布了新的文献求助10
2秒前
阿柒完成签到,获得积分10
3秒前
岁岁菌完成签到,获得积分10
4秒前
愤怒的稀发布了新的文献求助10
5秒前
叶子发布了新的文献求助10
5秒前
诚心小鸭子完成签到 ,获得积分10
6秒前
西红柿完成签到,获得积分10
7秒前
lily336699完成签到,获得积分10
9秒前
小王同学完成签到 ,获得积分10
9秒前
Ava应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
学术辉完成签到,获得积分10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
9秒前
10秒前
water应助科研通管家采纳,获得10
10秒前
慕青应助科研通管家采纳,获得10
10秒前
FashionBoy应助yiyi采纳,获得10
11秒前
地瓜爱做饭完成签到,获得积分10
11秒前
李健的小迷弟应助柚C美式采纳,获得10
11秒前
研友_VZG7GZ应助jason采纳,获得10
13秒前
无眠月完成签到,获得积分10
18秒前
18秒前
帅气书文发布了新的文献求助10
18秒前
Yaaaaa完成签到,获得积分20
20秒前
南屿发布了新的文献求助10
21秒前
23秒前
缓慢的饼干完成签到,获得积分10
23秒前
24秒前
26秒前
Lee发布了新的文献求助10
27秒前
syp完成签到,获得积分10
27秒前
Bing发布了新的文献求助10
28秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046550
求助须知:如何正确求助?哪些是违规求助? 3584281
关于积分的说明 11391799
捐赠科研通 3311911
什么是DOI,文献DOI怎么找? 1822315
邀请新用户注册赠送积分活动 894444
科研通“疑难数据库(出版商)”最低求助积分说明 816252