清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using SWATH‐MS to identify new molecular biomarkers in gingival crevicular fluid for detecting periodontitis and its response to treatment

牙周炎 医学 牙科
作者
Triana Blanco‐Pintos,Alba Regueira‐Iglesias,Marta Relvas,Manuela Alonso-Sampedro,María del Pilar Chantada‐Vázquez,Carlos Balsa‐Castro,Inmaculada Tomás
出处
期刊:Journal of Clinical Periodontology [Wiley]
卷期号:51 (10): 1342-1358 被引量:1
标识
DOI:10.1111/jcpe.14037
摘要

Abstract Aim To identify new biomarkers to detect untreated and treated periodontitis in gingival crevicular fluid (GCF) using sequential window acquisition of all theoretical mass spectra (SWATH‐MS). Materials and Methods GCF samples were collected from 44 periodontally healthy subjects and 40 with periodontitis (Stages III–IV). In the latter, 25 improved clinically 2 months after treatment. Samples were analysed using SWATH‐MS, and proteins were identified by the UniProt human‐specific database. The diagnostic capability of the proteins was determined with generalized additive models to distinguish the three clinical conditions. Results In the untreated periodontitis vs . periodontal health modelling, five proteins showed excellent or good bias‐corrected (bc)‐sensitivity/bc‐specificity values of >80%. These were GAPDH, ZG16B, carbonic anhydrase 1, plasma protease inhibitor C1 and haemoglobin subunit beta. GAPDH with MMP‐9, MMP‐8, zinc‐α‐2‐glycoprotein and neutrophil gelatinase‐associated lipocalin and ZG16B with cornulin provided increased bc‐sensitivity/bc‐specificity of >95%. For distinguishing treated periodontitis vs . periodontal health, most of these proteins and their combinations revealed a predictive ability similar to previous modelling. No model obtained relevant results to differentiate between periodontitis conditions. Conclusions New single and dual GCF protein biomarkers showed outstanding results in discriminating untreated and treated periodontitis from periodontal health. Periodontitis conditions were indistinguishable. Future research must validate these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
15秒前
Shining_Wu发布了新的文献求助30
21秒前
充电宝应助Shining_Wu采纳,获得10
31秒前
Kaiying0310发布了新的文献求助10
41秒前
机灵自中发布了新的文献求助10
46秒前
digger2023完成签到 ,获得积分10
48秒前
呆呆的猕猴桃完成签到 ,获得积分10
1分钟前
1分钟前
机灵自中完成签到,获得积分10
1分钟前
1分钟前
六一儿童节完成签到 ,获得积分10
1分钟前
1分钟前
冷傲半邪发布了新的文献求助150
1分钟前
1分钟前
1分钟前
啊咧发布了新的文献求助10
1分钟前
2分钟前
2分钟前
奇拉维特完成签到 ,获得积分10
2分钟前
fox完成签到 ,获得积分10
2分钟前
实验体8567号完成签到,获得积分10
2分钟前
个性归尘举报嘛呱求助涉嫌违规
2分钟前
tlh完成签到 ,获得积分10
2分钟前
2分钟前
啊咧完成签到,获得积分10
3分钟前
海人完成签到 ,获得积分10
3分钟前
JamesPei应助啊咧采纳,获得10
3分钟前
3分钟前
小平发布了新的文献求助10
3分钟前
poki完成签到 ,获得积分10
3分钟前
小平完成签到,获得积分10
3分钟前
4分钟前
张国麒完成签到 ,获得积分10
5分钟前
萧奕尘完成签到,获得积分10
5分钟前
5分钟前
研友_nxw2xL完成签到,获得积分10
5分钟前
muriel完成签到,获得积分10
5分钟前
xingsixs完成签到 ,获得积分10
6分钟前
6分钟前
orixero应助Caleb采纳,获得10
6分钟前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830505
求助须知:如何正确求助?哪些是违规求助? 3372812
关于积分的说明 10475449
捐赠科研通 3092626
什么是DOI,文献DOI怎么找? 1702226
邀请新用户注册赠送积分活动 818825
科研通“疑难数据库(出版商)”最低求助积分说明 771101