Multitemporal and multispectral data fusion for super-resolution of Sentinel-2 images

多光谱图像 图像分辨率 计算机科学 图像融合 遥感 人工智能 融合 分辨率(逻辑) 光谱分辨率 多光谱模式识别 光谱带 传感器融合 计算机视觉 模式识别(心理学) 图像(数学) 地质学 物理 谱线 哲学 天文 语言学
作者
Tomasz Tarasiewicz,Jakub Nalepa,Reuben A. Farrugia,Gianluca Valentino,Mang Chen,Johann A. Briffa,Michał Kawulok
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2301.11154
摘要

Multispectral Sentinel-2 images are a valuable source of Earth observation data, however spatial resolution of their spectral bands limited to 10 m, 20 m, and 60 m ground sampling distance remains insufficient in many cases. This problem can be addressed with super-resolution, aimed at reconstructing a high-resolution image from a low-resolution observation. For Sentinel-2, spectral information fusion allows for enhancing the 20 m and 60 m bands to the 10 m resolution. Also, there were attempts to combine multitemporal stacks of individual Sentinel-2 bands, however these two approaches have not been combined so far. In this paper, we introduce DeepSent -- a new deep network for super-resolving multitemporal series of multispectral Sentinel-2 images. It is underpinned with information fusion performed simultaneously in the spectral and temporal dimensions to generate an enlarged multispectral image. In our extensive experimental study, we demonstrate that our solution outperforms other state-of-the-art techniques that realize either multitemporal or multispectral data fusion. Furthermore, we show that the advantage of DeepSent results from how these two fusion types are combined in a single architecture, which is superior to performing such fusion in a sequential manner. Importantly, we have applied our method to super-resolve real-world Sentinel-2 images, enhancing the spatial resolution of all the spectral bands to 3.3 m nominal ground sampling distance, and we compare the outcome with very high-resolution WorldView-2 images. We will publish our implementation upon paper acceptance, and we expect it will increase the possibilities of exploiting super-resolved Sentinel-2 images in real-life applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
库小学生发布了新的文献求助10
刚刚
Jiang发布了新的文献求助10
刚刚
Llllllxxxxxxx发布了新的文献求助10
1秒前
韦老虎发布了新的文献求助10
2秒前
unyield完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
linkman应助GQ采纳,获得10
3秒前
英姑应助奥利奥利奥采纳,获得10
4秒前
123发布了新的文献求助10
5秒前
braver发布了新的文献求助10
5秒前
Vitana应助Melody采纳,获得10
6秒前
XIXI完成签到,获得积分10
6秒前
hbit应助ZZ采纳,获得10
6秒前
ghostpants完成签到,获得积分10
7秒前
zhao发布了新的文献求助10
7秒前
9秒前
ssss发布了新的文献求助10
9秒前
zoe666发布了新的文献求助10
9秒前
12秒前
科研通AI6应助含糊的灵雁采纳,获得10
12秒前
乐乐应助细心的梦芝采纳,获得10
12秒前
张怡博完成签到 ,获得积分10
13秒前
zero_idea完成签到,获得积分10
13秒前
13秒前
15秒前
15秒前
JamesPei应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
CodeCraft应助科研通管家采纳,获得10
15秒前
SciGPT应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
CipherSage应助科研通管家采纳,获得10
15秒前
15秒前
汉堡包应助科研通管家采纳,获得10
15秒前
16秒前
科研通AI6应助科研通管家采纳,获得30
16秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4372397
求助须知:如何正确求助?哪些是违规求助? 3869656
关于积分的说明 12063025
捐赠科研通 3512383
什么是DOI,文献DOI怎么找? 1927394
邀请新用户注册赠送积分活动 969408
科研通“疑难数据库(出版商)”最低求助积分说明 868265