Triplet attention and dual-pool contrastive learning for clinic-driven multi-label medical image classification

计算机科学 人工智能 模式识别(心理学) 合并(版本控制) 机器学习 上下文图像分类 多标签分类 图像(数学) 情报检索
作者
Yuhan Zhang,Luyang Luo,Qi Dou,Pheng‐Ann Heng
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:86: 102772-102772 被引量:32
标识
DOI:10.1016/j.media.2023.102772
摘要

Multi-label classification (MLC) can attach multiple labels on single image, and has achieved promising results on medical images. But existing MLC methods still face challenging clinical realities in practical use, such as: (1) medical risks arising from misclassification, (2) sample imbalance problem among different diseases, (3) inability to classify the diseases that are not pre-defined (unseen diseases). Here, we design a hybrid label to improve the flexibility of MLC methods and alleviate the sample imbalance problem. Specifically, in the labeled training set, we remain independent labels for high-frequency diseases with enough samples and use a hybrid label to merge low-frequency diseases with fewer samples. The hybrid label can also be used to put unseen diseases in practical use. In this paper, we propose Triplet Attention and Dual-pool Contrastive Learning (TA-DCL) for multi-label medical image classification based on the aforementioned label representation. TA-DCL architecture is a triplet attention network (TAN), which combines category-attention, self-attention and cross-attention together to learn high-quality label embeddings for all disease labels by mining effective information from medical images. DCL includes dual-pool contrastive training (DCT) and dual-pool contrastive inference (DCI). DCT optimizes the clustering centers of label embeddings belonging to different disease labels to improve the discrimination of label embeddings. DCI relieves the error classification of sick cases for reducing the clinical risk and improving the ability to detect unseen diseases by contrast of differences. TA-DCL is validated on two public medical image datasets, ODIR and NIH-ChestXray14, showing superior performance than other state-of-the-art MLC methods. Code is available at https://github.com/ZhangYH0502/TA-DCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Polary完成签到,获得积分10
2秒前
不安的可乐完成签到,获得积分10
2秒前
xiaoqi发布了新的文献求助10
2秒前
巧乐兹发布了新的文献求助10
2秒前
AI刘博士发布了新的文献求助10
3秒前
木木三发布了新的文献求助10
3秒前
zzzyq完成签到 ,获得积分20
3秒前
goblue完成签到,获得积分10
4秒前
5秒前
6秒前
liufan完成签到 ,获得积分10
6秒前
活着发布了新的文献求助10
6秒前
xx完成签到,获得积分10
7秒前
7秒前
7秒前
KK完成签到 ,获得积分10
7秒前
魏东芝发布了新的文献求助10
7秒前
willis发布了新的文献求助10
7秒前
kekekelili完成签到,获得积分10
8秒前
8秒前
凉水完成签到,获得积分10
8秒前
yuri发布了新的文献求助10
11秒前
佳佳发布了新的文献求助10
11秒前
Haoxiang发布了新的文献求助10
13秒前
Fe_001完成签到 ,获得积分10
13秒前
Luminous1123发布了新的文献求助10
13秒前
14秒前
16秒前
GGBond完成签到,获得积分10
16秒前
17秒前
17秒前
落日里的7目夂完成签到 ,获得积分10
17秒前
科研通AI2S应助ouLniM采纳,获得10
18秒前
18秒前
Hello应助1111222333采纳,获得10
18秒前
grumpysquirel发布了新的文献求助10
19秒前
19秒前
21秒前
ROMANTIC完成签到 ,获得积分10
22秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801165
求助须知:如何正确求助?哪些是违规求助? 3346853
关于积分的说明 10330624
捐赠科研通 3063166
什么是DOI,文献DOI怎么找? 1681445
邀请新用户注册赠送积分活动 807567
科研通“疑难数据库(出版商)”最低求助积分说明 763728