计量学
强度(物理)
准确度和精密度
计算物理学
光学
光谱学
色散(光学)
量子计量学
测量不确定度
物理
材料科学
量子
量子力学
量子技术
开放量子系统
作者
J. Li,J. Wang,Rui-Heng Yin,Qi Huang,Yan Tan,Chang-Le Hu,Yu Sun,O. L. Polyansky,Н. Ф. Зобов,Evgenii I. Lebedev,Rainer Stosch,Jonathan Tennyson,G. Li,Shui-Ming Hu
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2025-09-17
卷期号:11 (38)
标识
DOI:10.1126/sciadv.adz6560
摘要
Accurate determination of molecular transition intensities is vital to quantum chemistry and metrology, yet even simple diatomic molecules have historically been limited to 0.1% accuracy. Here, we show that frequency-domain measurements of relative intensity ratios outperform absolute methods, achieving 0.003% accuracy using dual-wavelength cavity mode dispersion spectroscopy. Enabled by high-precision frequency metrology, this approach reveals systematic discrepancies with state-of-the-art ab initio calculations, exposing subtle electron correlation effects in the dipole moment curve. Applied to line-intensity ratio thermometry (LRT), our technique determines gas temperatures with 0.5 millikelvin statistical uncertainty, exceeding previous LRT precision by two orders of magnitude. These results redefine the limits of optical gas metrology and enable International System of Units–traceable measurements for applications from combustion diagnostics to isotopic analysis. Discrepancies of up to 0.02% in transition probability ratios challenge theorists to refine models, establishing intensity ratios as a paradigm in precision molecular physics.
科研通智能强力驱动
Strongly Powered by AbleSci AI