Metabolite Fusion between Breath and Blood Enables More In-Depth Understanding of the Endogenous Metabolome

代谢组 代谢组学 代谢物 化学 气体分析呼吸 代谢途径 计算生物学 全血 色谱法 新陈代谢 生物化学 内科学 医学 生物
作者
Zhifeng Tang,Jianming Yang,Bingtian Su,Xin Xu,Xin Luo,Huiling Wang,Keda Zhang,Tao Huan,Pablo Sinues,Mingliang Fang,Xue Li
出处
期刊:Analytical Chemistry [American Chemical Society]
标识
DOI:10.1021/acs.analchem.5c00543
摘要

Blood is a widely used sample type in metabolomics but often loses volatile compounds during analysis. In contrast, exhaled breath offers a noninvasive and complementary matrix that retains these volatiles. However, the accuracy of metabolite identification in breath remains a key challenge. To address this, we developed and integrated three novel strategies to enhance the characterization of the human metabolome: (1) a controlled exercise protocol was applied to capture biologically relevant metabolic changes, (2) water–gas partition coefficients and a self-built breath metabolomics database were incorporated to enhance the identification accuracy of breath metabolites, and (3) fusion of breath and blood metabolites was conducted to expand metabolite coverage and validate the reliability of breath metabolite identification. Using high-resolution tandem mass spectrometry, we conducted an untargeted metabolomics analysis of breath and blood samples collected during exercise. A total of 66 metabolites were uniquely identified in breath, 59 were unique to blood, and only 4 were shared between the two. Fusion of breath and blood data expanded the coverage of exercise-associated metabolic pathways and revealed breath-specific markers of exercise-induced metabolic changes. This study presents an accurate and integrative strategy for breath metabolite discovery, advancing our understanding of in vivo metabolism and offering promising biomarkers for smart wearable devices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
栗少海发布了新的文献求助10
1秒前
个性的紫菜应助可靠幼旋采纳,获得10
1秒前
罗大富发布了新的文献求助10
1秒前
英姑应助蔓越莓麻薯采纳,获得10
2秒前
Akim应助sapphire采纳,获得10
2秒前
万能图书馆应助千幻采纳,获得10
2秒前
2秒前
芽芽发布了新的文献求助30
2秒前
swj完成签到,获得积分10
3秒前
3秒前
babylow完成签到,获得积分10
3秒前
彭于晏应助xianyi采纳,获得10
4秒前
量子星尘发布了新的文献求助100
4秒前
Sion完成签到 ,获得积分10
4秒前
大气建辉完成签到 ,获得积分10
5秒前
糖糖发布了新的文献求助10
5秒前
云微颖发布了新的文献求助10
5秒前
zhuxinxin完成签到,获得积分10
6秒前
JamesPei应助Xx采纳,获得30
6秒前
sunwei完成签到,获得积分10
6秒前
fff发布了新的文献求助10
6秒前
bkagyin应助加顿土豆采纳,获得10
7秒前
ss完成签到,获得积分10
7秒前
SMLW发布了新的文献求助10
8秒前
8秒前
Orange应助苯环羟基采纳,获得10
8秒前
小马甲应助务实的静珊采纳,获得10
8秒前
8秒前
aqiuyuehe发布了新的文献求助20
8秒前
搜集达人应助yuan采纳,获得10
8秒前
FashionBoy应助小纯洁采纳,获得10
8秒前
CodeCraft应助芽芽采纳,获得30
8秒前
9秒前
xutangjun完成签到,获得积分10
9秒前
田様应助春雨采纳,获得10
10秒前
拼搏丹秋完成签到,获得积分20
10秒前
Lucas应助小柚子采纳,获得50
10秒前
11秒前
12秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603700
求助须知:如何正确求助?哪些是违规求助? 4012310
关于积分的说明 12423171
捐赠科研通 3692797
什么是DOI,文献DOI怎么找? 2035913
邀请新用户注册赠送积分活动 1068997
科研通“疑难数据库(出版商)”最低求助积分说明 953482