Phosphorylation-assisted cell wall engineering enables ultra-strong, highly ion-conductive bio-membranes for high-power salinity gradient energy harvesting.

材料科学 盐度 导电体 离子 渗透力 细胞 化学工程 生物物理学 纳米技术 光电子学 化学 复合材料 工程类 生物化学 生物 生态学 有机化学 反渗透 正渗透
作者
Kaihuang Chen,Jie Zhou,Chunbao Xu,Zhiqiang Fang,Le Yu,Chaoji Chen,Xueqing Qiu
出处
期刊:PubMed
标识
DOI:10.1039/d5mh01003a
摘要

Nanofluidic membranes derived from cellulose-based biomaterials have garnered increasing attention for ion transport and regulation due to their modifiable nature, ordered structures, sustainability, and excellent compatibility. However, their practical applications in ionic circuits, energy conversion, and sensing have been limited by insufficient mechanical strength and suboptimal ion transport properties. In this study, we report ultra-strong, highly ion-conductive bio-membranes fabricated through phosphorylation-assisted cell wall engineering. This process introduces high-density anionic phosphate groups onto cellulose chains while preserving their natural hierarchical alignment across macroscopic to molecular scales. The resulting PhosWood-40 membrane (bio-membranes phosphorylated for 40 minutes) shows exceptional performance, with a record-high ion conductivity of 21.01 mS cm-1 in 1.0 × 10-5 mol L-1 KCl aqueous solution, an ionic selectivity of 0.95, and a high tensile strength up to 241 MPa under dry conditions and 66 MPa under wet conditions. Phosphorylation enhances the membrane's ionic conductivity by 100-fold and improves cation/anion ratio by 38-fold compared to the unmodified membrane, primarily due to the increased surface charge density and optimized ion channel accessibility. Under simulated conditions of artificial seawater (0.5 mol L-1) and river water (0.01 mol L-1), the phosphorylated PhosWood-40 membranes achieve a remarkable output power density of 6.4 W m-2, surpassing unmodified membranes by 30-fold and outperforming other bio-based nanofluidic systems. This work highlights the potential of renewable and easily modifiable cellulose-based biomaterials for developing high-performance nanofluidic systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史前巨怪完成签到,获得积分10
刚刚
小吴完成签到,获得积分20
刚刚
小兵完成签到,获得积分10
2秒前
顾矜应助大孙采纳,获得10
2秒前
2秒前
英姑应助若初拾光采纳,获得10
3秒前
深情安青应助undine采纳,获得10
4秒前
刘生完成签到,获得积分10
4秒前
11发布了新的文献求助10
4秒前
一一完成签到 ,获得积分10
5秒前
科研通AI5应助hhh采纳,获得10
6秒前
啊是是是完成签到,获得积分10
7秒前
nn完成签到,获得积分10
7秒前
听闻发布了新的文献求助10
7秒前
9秒前
9秒前
KETU发布了新的文献求助10
14秒前
挚智发布了新的文献求助10
16秒前
时尚灵安发布了新的文献求助10
17秒前
18秒前
科研通AI2S应助Yuanyuan采纳,获得10
20秒前
酷波er应助xiguaruby采纳,获得10
20秒前
yyy完成签到,获得积分20
21秒前
aaa应助称心的火车采纳,获得30
22秒前
一去发布了新的文献求助10
23秒前
25秒前
11完成签到,获得积分10
26秒前
27秒前
小静发布了新的文献求助10
27秒前
28秒前
沉默的皮卡丘完成签到 ,获得积分10
28秒前
少年应助斯文的听白采纳,获得10
28秒前
舒心飞珍完成签到,获得积分10
28秒前
29秒前
31秒前
31秒前
吴垚完成签到,获得积分10
31秒前
berg发布了新的文献求助10
31秒前
mango524发布了新的文献求助10
31秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4476178
求助须知:如何正确求助?哪些是违规求助? 3934338
关于积分的说明 12206351
捐赠科研通 3588931
什么是DOI,文献DOI怎么找? 1973352
邀请新用户注册赠送积分活动 1010890
科研通“疑难数据库(出版商)”最低求助积分说明 904532