Machine learning-based prognostic modeling of seven signatures associated with lysosomes for predicting prognosis and immune status in clear cell renal cell carcinoma

肾透明细胞癌 肾细胞癌 肿瘤科 溶酶体 医学 免疫系统 内科学 接收机工作特性 肾癌 生物 免疫学 生物化学
作者
Jie Chen,Bo Chen,Mengli Zhu,Yin Huang,Shu Ning,Jinze Li,Jin Li,Zeyu Chen,Puze Wang,Biao Ran,Jiahao Yang,Qiang Wei,Jianzhong Ai,Liangren Liu,Dehong Cao
出处
期刊:Oncology Research and Treatment [Karger Publishers]
卷期号:: 1-20
标识
DOI:10.1159/000548124
摘要

Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer and is associated with poor prognosis in advanced stages. This study aims to develop a prognostic model for patients with ccRCC based on a lysosome-related gene signature. Methods: The clinical and transcriptomic data of Kidney Renal Clear Cell Carcinoma (KIRC) patients were downloaded from TCGA, cBioportal and GEO databases, and lysosome-related gene sets were acquired in the previous study. TCGA data was used as a training set to investigate the prognostic role of lysosomal-related genes in ccRCC, and cBioportal and GEO databases were used for validation. After the lysosome-related differentially expressed genes were found, machine learning method was used to construct a risk model, and Kaplan-Meier (K-M) and receiver operating characteristic curves (ROC) were used to evaluate the performance of the model. Results: Machine learning methods were utilized to identify seven gene signatures related to lysosome, which accurately predict the prognosis of ccRCC. Patients with higher risk scores demonstrate poorer overall survival (HR: 2.467, 95%CI: 1.642-3.706, P<0.001), and significant disparities in immune infiltration, immune score, and response to anticancer drugs are observed between the high-risk group and the low-risk group (P<0.001). Conclusions: The prognostic model developed in this study demonstrates a high efficacy in accurately predicting the overall survival (OS) of ccRCC patients, thereby offering a novel perspective for the advancement of ccRCC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨的愫发布了新的文献求助10
刚刚
1秒前
开放怀亦发布了新的文献求助10
2秒前
3秒前
7秒前
刘丽忠发布了新的文献求助10
8秒前
今后应助懦弱的雪兰采纳,获得10
8秒前
开放怀亦完成签到,获得积分10
9秒前
笨笨的愫完成签到,获得积分10
9秒前
缓慢海亦完成签到,获得积分20
11秒前
12秒前
14秒前
深情安青应助缓慢海亦采纳,获得10
15秒前
15秒前
可爱的函函应助音落采纳,获得10
16秒前
义气的藏鸟完成签到,获得积分10
16秒前
汪汪淬冰冰完成签到,获得积分10
17秒前
11发布了新的文献求助10
19秒前
19秒前
20秒前
李健的小迷弟应助机读卡采纳,获得10
22秒前
xxxxxxxxx发布了新的文献求助10
22秒前
刘星宇发布了新的文献求助10
23秒前
慕青应助朱超帆采纳,获得10
25秒前
SimonShaw完成签到,获得积分10
25秒前
26秒前
sss发布了新的文献求助10
28秒前
研友_VZG7GZ应助听话的梦桃采纳,获得10
28秒前
刘晓云完成签到,获得积分10
29秒前
梓渊完成签到 ,获得积分10
29秒前
30秒前
30秒前
XIXIXI发布了新的文献求助10
30秒前
楚子航完成签到,获得积分10
34秒前
机读卡发布了新的文献求助10
34秒前
所所应助Myl采纳,获得10
35秒前
36秒前
36秒前
田様应助刘晓云采纳,获得10
36秒前
双一刘完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4970889
求助须知:如何正确求助?哪些是违规求助? 4227349
关于积分的说明 13166143
捐赠科研通 4015317
什么是DOI,文献DOI怎么找? 2197238
邀请新用户注册赠送积分活动 1210136
关于科研通互助平台的介绍 1124587