亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accelerating Chemical Kinetics Calculations With Physics Informed Neural Networks

Softmax函数 人工神经网络 网络体系结构 燃烧 计算机科学 人工智能 化学 物理化学 计算机安全
作者
Ahmed Almeldein,Noah Van Dam
标识
DOI:10.1115/icef2022-90371
摘要

Abstract Detailed chemical kinetics calculations can be very computationally expensive, and so various approaches have been used to speed up combustion calculations. Deep neural networks (DNNs) are one promising approach that has seen significant development recently. Standard DNNs, however, do not necessarily follow physical constraints such as conservation of mass. Physics Informed Neural Networks (PINNs) are a class of neural networks that have physical laws embedded within the training process to create networks that follow those physical laws. A new PINN-based DNN approach to chemical kinetics modeling has been developed to make sure mass fraction predictions adhere to the conservation of atomic species. The approach also utilizes a mixture-of-experts (MOE) architecture where the data is distributed on multiple sub-networks followed by a softmax selective layer. The MOE architecture allows the different sub-networks to specialize in different thermochemical regimes, such as early stage ignition reactions or post-flame equilibrium chemistry, then the softmax layer smoothly transitions between the sub-network predictions. This modeling approach was applied to the prediction of methane-air combustion using the GRI-Mech 3.0 as the reference mechanism. The training database was composed of data from 0D ignition delay simulations under initial conditions of 0.2–50 bar pressure, 500–2000 K temperature, an equivalence ratio between 0 and 2, and an N2-dilution percentage of up to 50%. A wide variety of network sizes and architectures of between 3 and 20 sub-networks and 6,600 to 77,000 neurons were tested. The resulting networks were able to predict 0D combustion simulations with similar accuracy and atomic mass conservation as standard kinetics solvers while having a 10–50× speedup in online evaluation time using CPUs, and on average over 200× when using a GPU.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
25秒前
44秒前
49秒前
安年完成签到 ,获得积分10
58秒前
1分钟前
汉堡包应助王王碎冰冰采纳,获得10
1分钟前
2分钟前
555557发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
555557完成签到,获得积分10
2分钟前
2分钟前
2分钟前
王王碎冰冰关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
天天快乐应助111采纳,获得20
3分钟前
FJXTY发布了新的文献求助10
3分钟前
3分钟前
3分钟前
111发布了新的文献求助20
3分钟前
bkagyin应助FJXTY采纳,获得10
3分钟前
牛黄完成签到 ,获得积分10
4分钟前
彭于晏应助迅速的岩采纳,获得10
4分钟前
4分钟前
4分钟前
赵赵发布了新的文献求助10
4分钟前
4分钟前
迅速的岩发布了新的文献求助10
4分钟前
赵赵完成签到,获得积分20
4分钟前
Willow完成签到,获得积分10
4分钟前
JamesPei应助赵赵采纳,获得10
4分钟前
研友_VZG7GZ应助轻松凌柏采纳,获得10
4分钟前
4分钟前
符寄云发布了新的文献求助10
4分钟前
充电宝应助yihuifa采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482463
求助须知:如何正确求助?哪些是违规求助? 4583236
关于积分的说明 14389049
捐赠科研通 4512329
什么是DOI,文献DOI怎么找? 2472833
邀请新用户注册赠送积分活动 1459053
关于科研通互助平台的介绍 1432553