已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Accelerating Chemical Kinetics Calculations With Physics Informed Neural Networks

Softmax函数 人工神经网络 网络体系结构 燃烧 计算机科学 人工智能 化学 物理化学 计算机安全
作者
Ahmed Almeldein,Noah Van Dam
标识
DOI:10.1115/icef2022-90371
摘要

Abstract Detailed chemical kinetics calculations can be very computationally expensive, and so various approaches have been used to speed up combustion calculations. Deep neural networks (DNNs) are one promising approach that has seen significant development recently. Standard DNNs, however, do not necessarily follow physical constraints such as conservation of mass. Physics Informed Neural Networks (PINNs) are a class of neural networks that have physical laws embedded within the training process to create networks that follow those physical laws. A new PINN-based DNN approach to chemical kinetics modeling has been developed to make sure mass fraction predictions adhere to the conservation of atomic species. The approach also utilizes a mixture-of-experts (MOE) architecture where the data is distributed on multiple sub-networks followed by a softmax selective layer. The MOE architecture allows the different sub-networks to specialize in different thermochemical regimes, such as early stage ignition reactions or post-flame equilibrium chemistry, then the softmax layer smoothly transitions between the sub-network predictions. This modeling approach was applied to the prediction of methane-air combustion using the GRI-Mech 3.0 as the reference mechanism. The training database was composed of data from 0D ignition delay simulations under initial conditions of 0.2–50 bar pressure, 500–2000 K temperature, an equivalence ratio between 0 and 2, and an N2-dilution percentage of up to 50%. A wide variety of network sizes and architectures of between 3 and 20 sub-networks and 6,600 to 77,000 neurons were tested. The resulting networks were able to predict 0D combustion simulations with similar accuracy and atomic mass conservation as standard kinetics solvers while having a 10–50× speedup in online evaluation time using CPUs, and on average over 200× when using a GPU.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cherry完成签到 ,获得积分10
刚刚
123发布了新的文献求助10
刚刚
2秒前
bluee完成签到,获得积分10
3秒前
小黄鸭完成签到,获得积分10
7秒前
英勇的梨愁完成签到 ,获得积分10
8秒前
Rory完成签到 ,获得积分10
9秒前
开心的秋天完成签到 ,获得积分10
10秒前
12秒前
简单白风完成签到 ,获得积分10
13秒前
成就的笑南完成签到 ,获得积分0
14秒前
15秒前
酷酷云朵完成签到 ,获得积分10
17秒前
17秒前
Komorebi完成签到 ,获得积分10
17秒前
alex12259完成签到 ,获得积分10
18秒前
18秒前
南山发布了新的文献求助10
20秒前
wcy完成签到 ,获得积分10
22秒前
23秒前
23秒前
27秒前
31秒前
丝竹丛中墨未干完成签到,获得积分10
34秒前
bkagyin应助yyy采纳,获得10
35秒前
Jay枫发布了新的文献求助10
36秒前
猪脑过载完成签到,获得积分10
38秒前
Ava应助陈思采纳,获得10
41秒前
iaskwho完成签到 ,获得积分10
43秒前
Jay枫完成签到,获得积分20
44秒前
45秒前
Criminology34举报zhang求助涉嫌违规
48秒前
chengxiping发布了新的文献求助10
49秒前
斯文败类应助忽悠老羊采纳,获得10
50秒前
53秒前
酷炫的安雁完成签到 ,获得积分10
54秒前
BowieHuang应助Cl采纳,获得10
55秒前
没想到羽毛完成签到,获得积分20
55秒前
别摆烂了完成签到,获得积分10
55秒前
56秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772052
求助须知:如何正确求助?哪些是违规求助? 5595492
关于积分的说明 15428899
捐赠科研通 4905183
什么是DOI,文献DOI怎么找? 2639251
邀请新用户注册赠送积分活动 1587158
关于科研通互助平台的介绍 1542040