A comprehensive analysis of piezoelectric energy harvesting from bridge vibrations

能量收集 振动 储能 电子线路 电感器 电容器 电容 桥式电路 电气工程 压电 整流器(神经网络) 功率(物理) 材料科学 电子工程 工程类 计算机科学 声学 电压 物理 随机神经网络 电极 量子力学 机器学习 循环神经网络 人工神经网络
作者
Zhiwei Zhang,Hongjun Xiang,Lihua Tang,Weiqing Yang
出处
期刊:Journal of Physics D [Institute of Physics]
卷期号:56 (1): 014001-014001 被引量:6
标识
DOI:10.1088/1361-6463/ac9f21
摘要

Abstract Piezoelectric energy harvesting from bridge vibrations has the potential to power wireless sensors used for bridge health monitoring. Often, it is necessary to store the harvested energy before it could be used to power the sensor intermittently. However, the behavior of the piezoelectric energy harvester (PEH) with nonlinear interface circuits for energy extraction and storage subject to realistic bridge vibrations has not been fully understood. This work performs a comprehensive analysis on the performance of the PEH subject to the measured railway bridge vibrations and compares the energy stored on a capacitor using four different interface circuits. Firstly, the dynamic characteristics of the railway bridge is analyzed. A cantilevered PEH is then designed and fabricated based on the dynamic characteristics of the bridge. Subsequently, four realistic energy extraction and storage interface circuits, namely, the standard energy harvesting (SEH), synchronized charge extraction (SCE), parallel synchronized switch harvesting on inductor (P-SSHI) and series SSHI (S-SSHI) circuits, are evaluated and compared when the PEH subject to the measured bridge vibrations. The influence of the storage capacitance and the 1st short-circuit natural frequency of the PEH on the stored energy with these four circuits is then discussed. An optimal storage capacitance exists in the systems based on SEH, P-SSHI and S-SSHI circuits. The system based on P-SSHI circuit has the highest efficiency on energy storage. This work provides a technical framework to develop the realistic energy harvesting and storage system for realization of self-powered bridge condition monitoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
IP190237完成签到,获得积分0
1秒前
2秒前
龅牙苏完成签到,获得积分10
2秒前
科研通AI5应助超级气泡水采纳,获得10
2秒前
刘敏小七给刘敏小七的求助进行了留言
3秒前
漂亮水绿发布了新的文献求助20
4秒前
Hyy完成签到 ,获得积分10
7秒前
baibai发布了新的文献求助10
7秒前
8秒前
9秒前
白青发布了新的文献求助10
9秒前
滕擎发布了新的文献求助10
10秒前
荡南桥完成签到,获得积分10
11秒前
小亮哈哈完成签到,获得积分0
11秒前
文艺的初南完成签到 ,获得积分10
12秒前
感动听蓉发布了新的文献求助10
13秒前
大气石头完成签到,获得积分10
13秒前
13秒前
Ava应助JackyYOYO采纳,获得10
15秒前
三七发布了新的文献求助10
15秒前
阳离子应助老鱼吹浪采纳,获得10
16秒前
17秒前
段采萱发布了新的文献求助10
17秒前
拂晓梦彤发布了新的文献求助10
18秒前
manan发布了新的文献求助10
19秒前
高大凌寒应助踏实无敌采纳,获得200
20秒前
彭于彦祖应助白青采纳,获得10
22秒前
科研通AI5应助menyanyan采纳,获得10
23秒前
微风完成签到,获得积分10
24秒前
24秒前
加菲丰丰应助唯心止论采纳,获得10
24秒前
傻傻完成签到,获得积分20
26秒前
29秒前
222完成签到 ,获得积分10
29秒前
暖暖完成签到,获得积分10
29秒前
30秒前
Ava应助糊涂的依柔采纳,获得10
32秒前
别总熬夜完成签到,获得积分10
32秒前
33秒前
33秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777