CoSleepNet: Automated sleep staging using a hybrid CNN-LSTM network on imbalanced EEG-EOG datasets

计算机科学 脑电图 人工智能 睡眠(系统调用) 模式识别(心理学) 眼电学 机器学习 眼球运动 神经科学 心理学 操作系统
作者
Enes Efe,Seral Özşen
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104299-104299 被引量:48
标识
DOI:10.1016/j.bspc.2022.104299
摘要

• A new deep learning model with minimal model complexity is presented for sleep staging using multi-channel sleep data. • The proposed model aims to increase the classification performance in unbalanced data. • Focal Loss is used to take the place of the traditional categorical cross-entropy loss function. • The performance of the proposed method is promising compared to existing ones. Sleep relaxes and rests the body by slowing down the metabolism, making us physically stronger and fitter when we wake up. However, in a sleep disorder that may occur in humans, this process is reversed and various disorders occur in the body. Therefore, determining sleep stages is vital for diagnosing and treating such sleep disorders. However, manual scoring of sleep stages is tedious, time-consuming and requires considerable expertise. It also suffers from inter-observer variability. Deep learning techniques can automate this process, overcome these problems and produce more consistent results. This study proposes a new hybrid neural network architecture using focal loss and discrete cosine transform methods to solve the training data imbalance problem. The model was trained on four different databases using k-fold validation strategies (subject-wise), and the highest score was 87.11% accuracy, 81.81% Kappa score, and 79.83% MF1 when using two channels (EEG-EOG). The results of our approach are promising when compared to existing methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
寒梅发布了新的文献求助10
1秒前
1秒前
1秒前
失眠语海完成签到 ,获得积分10
2秒前
顾矜应助NGU采纳,获得10
3秒前
3秒前
4秒前
4秒前
4秒前
何my完成签到 ,获得积分10
4秒前
Lexcellent发布了新的文献求助10
4秒前
豆芽完成签到,获得积分10
4秒前
我想学习完成签到 ,获得积分10
4秒前
可爱的函函应助jwjzsznb采纳,获得10
5秒前
5秒前
李明发布了新的文献求助10
6秒前
复杂曼梅完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
豆芽发布了新的文献求助10
7秒前
无花果应助xiao采纳,获得10
8秒前
8秒前
CC晨发布了新的文献求助10
8秒前
8秒前
NGU完成签到,获得积分10
9秒前
9秒前
汉堡包应助廉6666采纳,获得10
10秒前
狮子王完成签到,获得积分10
10秒前
走过的风发布了新的文献求助10
10秒前
10秒前
asdf完成签到,获得积分10
11秒前
12秒前
图图完成签到,获得积分10
12秒前
12秒前
12秒前
牙鸟完成签到,获得积分10
12秒前
打打应助科研通管家采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5297129
求助须知:如何正确求助?哪些是违规求助? 4446068
关于积分的说明 13838325
捐赠科研通 4331226
什么是DOI,文献DOI怎么找? 2377460
邀请新用户注册赠送积分活动 1372740
关于科研通互助平台的介绍 1338303