Sparsity Dependent Metrics Depict Alteration of Brain Network Connectivity in Parkinson's Disease

灰质 聚类系数 聚类分析 模式识别(心理学) 网络拓扑 计算机科学 神经影像学 神经科学 帕金森病 统计参数映射 体素 图论 磁共振成像 人工智能 疾病 心理学 白质 数学 医学 病理 放射科 组合数学 操作系统
作者
Tanmayee Samantaray,Jitender Saini,Cota Navin Gupta
标识
DOI:10.1109/embc48229.2022.9871258
摘要

To date, regional brain atrophy unfolded using neuroimaging methods is observed to be the signature of Parkinson's disease (PD). In addition, graph theory-based studies are proving altered structural connectivity in PD. This motivated us to employ regional grey matter volume of PD patients (N=70) for comparative network analysis with an equal number of age- and gender-matched healthy controls (HC). In the current study, normalized grey matter maps obtained from structural magnetic resonance imaging (sMRI) were parcellated into 56 ROI (regions of interest) for construction of symmetric matrix using partial correlation between every pair of regional grey matter volumes. Sparsity thresholding was used to binarize the matrices and MATLAB functions from brain connectivity toolbox were employed to obtain the connectivity metrics. We observed PD with a significantly lower clustering coefficient as well as local efficiency at higher sparsities (above 0.9 and 0.84, respectively) with p<0.05. The right fusiform gyrus was found to be the conserved hub, besides disruption of four hubs and regeneration of five other hubs. Lower clustering coefficient and local efficiency were indicative of reduced local integration and information processing, respectively. Hence, we suggest that global clustering coefficient and local efficiency could have a pivotal role in evaluating network topology. Thereby, our findings confirmed impairment of normal structural brain network topology reflecting disconnectivity mechanisms in PD. Clinical Relevance - Analyzing structural brain connectivity in Parkinson's disease might provide the researchers and clinicians with a signature pattern of the disease to discriminate patients from normal controls.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
mangle完成签到,获得积分10
3秒前
hmhu发布了新的文献求助10
3秒前
今后应助WANG采纳,获得10
4秒前
芙瑞完成签到 ,获得积分10
4秒前
善学以致用应助moyu采纳,获得10
5秒前
逝流金发布了新的文献求助10
6秒前
6秒前
弋甫完成签到,获得积分10
7秒前
sword发布了新的文献求助10
8秒前
甜美迎南完成签到 ,获得积分10
8秒前
Owen应助昏睡的笑南采纳,获得10
9秒前
Thomas发布了新的文献求助10
10秒前
眼睛大的冰岚完成签到,获得积分10
10秒前
10秒前
郭京京发布了新的文献求助10
10秒前
karL完成签到,获得积分10
14秒前
姒嵛完成签到 ,获得积分10
14秒前
陈年旧事发布了新的文献求助10
18秒前
小二郎应助黄金矿工采纳,获得10
19秒前
魔幻灯泡完成签到,获得积分10
21秒前
奋斗的雅柏完成签到,获得积分20
22秒前
Sunny完成签到,获得积分10
22秒前
木木SCI完成签到 ,获得积分10
22秒前
Xiaoxiao应助范_aaaaaa采纳,获得10
24秒前
机灵柚子应助昏睡的笑南采纳,获得10
25秒前
米奇的妙妙屋完成签到,获得积分10
25秒前
ding应助Joyi采纳,获得10
26秒前
CipherSage应助sjx00100采纳,获得10
26秒前
kiki完成签到 ,获得积分10
27秒前
天玄一刀完成签到,获得积分10
27秒前
和谐的果汁完成签到 ,获得积分10
28秒前
阔达的雁凡完成签到,获得积分10
28秒前
JamesPei应助ddd采纳,获得10
30秒前
Thomas完成签到,获得积分20
31秒前
光之战士完成签到 ,获得积分10
31秒前
sjx00100完成签到,获得积分10
35秒前
SYLH应助LaTeXer采纳,获得10
35秒前
妖孽的二狗完成签到 ,获得积分10
36秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801337
求助须知:如何正确求助?哪些是违规求助? 3346984
关于积分的说明 10331247
捐赠科研通 3063265
什么是DOI,文献DOI怎么找? 1681476
邀请新用户注册赠送积分活动 807612
科研通“疑难数据库(出版商)”最低求助积分说明 763790