Learning a Deep Ensemble Network With Band Importance for Hyperspectral Object Tracking

高光谱成像 人工智能 计算机科学 计算机视觉 特征提取 模式识别(心理学) BitTorrent跟踪器 深度学习 跟踪(教育) 视频跟踪 特征(语言学) 主动外观模型 对象(语法) 目标检测 图像(数学) 眼动 教育学 语言学 心理学 哲学
作者
Zhuanfeng Li,Fengchao Xiong,Jun Zhou,Jianfeng Lu,Yuntao Qian
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:32: 2901-2914 被引量:73
标识
DOI:10.1109/tip.2023.3263109
摘要

Attributing to material identification ability powered by a large number of spectral bands, hyperspectral videos (HSVs) have great potential for object tracking. Most hyperspectral trackers employ manually designed features rather than deeply learned features to describe objects due to limited available HSVs for training, leaving a huge gap to improve the tracking performance. In this paper, we propose an end-to-end deep ensemble network (SEE-Net) to address this challenge. Specifically, we first establish a spectral self-expressive model to learn the band correlation, indicating the importance of a single band in forming hyperspectral data. We parameterize the optimization of the model with a spectral self-expressive module to learn the nonlinear mapping from input hyperspectral frames to band importance. In this way, the prior knowledge of bands is transformed into a learnable network architecture, which has high computational efficiency and can fast adapt to the changes of target appearance because of no iterative optimization. The band importance is further exploited from two aspects. On the one hand, according to the band importance, each frame of HSVs is divided into several three-channel false-color images which are then used for deep feature extraction and location. On the other hand, based on the band importance, the importance of each false-color image is computed, which is then used to assemble the tracking results from individual false-color images. In this way, the unreliable tracking caused by false-color images of low importance can be suppressed to a large extent. Extensive experimental results show that SEE-Net performs favorably against the state-of-the-art approaches. The source code will be available at https://github.com/hscv/SEE-Net.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
18166992885完成签到 ,获得积分10
1秒前
Nicole发布了新的文献求助10
1秒前
荔枝发布了新的文献求助10
2秒前
量子星尘发布了新的文献求助10
3秒前
plusweng发布了新的文献求助30
3秒前
chen发布了新的文献求助10
3秒前
3秒前
司徒诗蕾发布了新的文献求助10
3秒前
heroicsheng完成签到,获得积分10
3秒前
邱梓铭发布了新的文献求助10
4秒前
5秒前
树树完成签到,获得积分10
5秒前
6秒前
彭于晏应助小杏仁采纳,获得10
8秒前
阿零发布了新的文献求助10
8秒前
8秒前
9秒前
wu完成签到,获得积分10
9秒前
叶雨欣发布了新的文献求助10
9秒前
kong发布了新的文献求助10
11秒前
丰富的翠完成签到,获得积分10
11秒前
12秒前
快乐的白枫完成签到,获得积分20
12秒前
荔枝完成签到,获得积分20
13秒前
13秒前
顾矜应助劳永杰采纳,获得10
13秒前
13秒前
撼vv完成签到 ,获得积分10
14秒前
小孙同学完成签到,获得积分10
14秒前
14秒前
科目三应助吴邪采纳,获得10
15秒前
梦梦发布了新的文献求助10
15秒前
overlxrd发布了新的文献求助10
15秒前
xchu发布了新的文献求助10
16秒前
rayc应助危机的酒窝采纳,获得10
16秒前
丹丹丹应助taki采纳,获得10
16秒前
lzn发布了新的文献求助10
16秒前
yuze_22完成签到,获得积分10
16秒前
ELend完成签到,获得积分10
17秒前
蘑菇完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5405246
求助须知:如何正确求助?哪些是违规求助? 4523584
关于积分的说明 14094210
捐赠科研通 4437323
什么是DOI,文献DOI怎么找? 2435615
邀请新用户注册赠送积分活动 1427752
关于科研通互助平台的介绍 1406057