Mechanism of CO2 enhanced oil recovery in kerogen pores and CO2 sequestration in shale: A molecular dynamics simulation study

干酪根 油页岩 提高采收率 石油工程 吸附 化学工程 页岩油 材料科学 地质学 化学 烃源岩 有机化学 构造盆地 工程类 古生物学
作者
Hongguang Sui,Fengyun Zhang,Lei Zhang,Ziqiang Wang,Songling Yuan,Diansheng Wang,Yudou Wang
出处
期刊:Fuel [Elsevier]
卷期号:349: 128692-128692 被引量:49
标识
DOI:10.1016/j.fuel.2023.128692
摘要

The strong interactions between kerogen and CO2 give an opportunity to enhance shale oil recovery (EOR) by CO2 injection, and also reduce greenhouse gas emissions through CO2 capture and geological storage. Understanding the mechanism of CO2 enhanced shale oil recovery is important significance for achieving optimum shale oil exploration and development. In this work, the oil storage behavior and mechanism of CO2 enhanced shale oil recovery in kerogen pores are studied by using molecular dynamics (MD) simulations. For oil storage, the density curves are calculated and the results show that it can be found that there are two adsorption layers near the wall, and the slight fluctuations density near the two opposite wall presents different trends due to the roughness of the walls surface. For flooding behavior, CO2 molecules are easily dissolved into the oil phase and drive out most of the oil within the kerogen slit pores after 3 ns with differential pressure of 10 MPa for our model. The higher differential pressure corresponds to earlier CO2 breakthrough and smaller value of oil recovery. Oil molecules located in smaller pores require a longer flooding time to be displaced. The displacement is the main mechanism of oil recovery in nanoscale kerogen pores for CO2 flooding. The diffusion coefficients of CO2/oil and interaction energy are calculated and analyzed. Further, the CO2 storage capacity in shale formations are computed and its value is 466 kg/m3. This work reveals oil storage behavior and the mechanism of CO2 flooding in shale reservoirs, and the results are significant for the CO2 enhancement of oil recovery, and for CO2 capture and storage in kerogen pores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lyx完成签到,获得积分10
1秒前
www发布了新的文献求助10
1秒前
帅气的plum发布了新的文献求助10
2秒前
4秒前
meredith发布了新的文献求助10
4秒前
诺非完成签到,获得积分10
4秒前
5秒前
5秒前
冷眼观潮发布了新的文献求助10
6秒前
han发布了新的文献求助10
7秒前
任性冰凡发布了新的文献求助10
7秒前
mint完成签到,获得积分10
7秒前
高大莺发布了新的文献求助10
8秒前
8秒前
帅气的plum完成签到,获得积分10
8秒前
华仔应助欢喜的荔枝采纳,获得10
9秒前
9秒前
Chew1q完成签到,获得积分10
9秒前
LSY发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
11秒前
Jasper应助Pom采纳,获得10
12秒前
12秒前
须知完成签到 ,获得积分10
12秒前
细腻的代亦完成签到 ,获得积分10
12秒前
Youth发布了新的文献求助10
14秒前
14秒前
14秒前
15秒前
温柔嚣张发布了新的文献求助30
15秒前
15秒前
锌离子电池电解液完成签到,获得积分10
16秒前
dongdadada发布了新的文献求助10
16秒前
16秒前
17秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5649163
求助须知:如何正确求助?哪些是违规求助? 4777416
关于积分的说明 15046744
捐赠科研通 4808022
什么是DOI,文献DOI怎么找? 2571211
邀请新用户注册赠送积分活动 1527796
关于科研通互助平台的介绍 1486697