Are you willing to forgive AI? Service recovery from medical AI service failure

服务补救 服务(商务) 归属 服务交付框架 服务水平目标 服务设计 服务保证 业务 服务提供商 服务体系 营销 运营管理 过程管理 知识管理 计算机科学 心理学 服务质量 工程类 社会心理学
作者
Aihui Chen,Yueming Pan,Longyu Li,Yunshuang Yu
出处
期刊:Industrial Management and Data Systems [Emerald Publishing Limited]
卷期号:122 (11): 2540-2557 被引量:17
标识
DOI:10.1108/imds-12-2021-0801
摘要

Purpose As an emerging technology, medical artificial intelligence (AI) plays an important role in the healthcare system. However, the service failure of medical AI causes severe violations to user trust. Different from other services that do not involve vital health, customers' trust toward the service of medical AI are difficult to repair after service failure. This study explores the links among different types of attributions (external and internal), service recovery strategies (firm, customer, and co-creation), and service recovery outcomes (trust). Design/methodology/approach Empirical analysis was carried out using data ( N = 338) collected from a 2 × 3 scenario-based experiment. The scenario-based experiment has three stages: service delivery, service failure, and service recovery. The attribution of service failure was divided into two parts (customer vs. firm), while the recovery of service failure was divided into three parts (customer vs. firm vs. co-creation), making the design full factorial. Findings The results show that (1) internal attribution of the service failure can easily repair both affective-based trust (AFTR) and cognitive-based trust (CGTR), (2) co-creation recovery has a greater positive effect on AFTR while firm recovery is more effective on cognitive-based trust, (3) a series of interesting conclusions are found in the interaction between customers' attribution and service recovery strategy. Originality/value The authors' findings are of great significance to the strategy of service recovery after service failure in the medical AI system. According to the attribution type of service failure, medical organizations can choose a strategy to more accurately improve service recovery effect.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助RON采纳,获得10
刚刚
naturehome完成签到,获得积分10
1秒前
百草完成签到,获得积分10
1秒前
田千凝完成签到,获得积分10
1秒前
殊归发布了新的文献求助10
1秒前
yabocai发布了新的文献求助10
1秒前
Carol_yl发布了新的文献求助10
1秒前
sui发布了新的文献求助30
1秒前
2秒前
2秒前
3秒前
superpharm完成签到,获得积分10
3秒前
xiaojingbao发布了新的文献求助10
4秒前
KEN完成签到,获得积分10
4秒前
onlyblue完成签到,获得积分20
5秒前
阳光冰颜完成签到 ,获得积分10
6秒前
田千凝发布了新的文献求助10
6秒前
李爱国应助Paracosm采纳,获得10
6秒前
某强发布了新的文献求助10
7秒前
善学以致用应助精明松思采纳,获得10
7秒前
wanci应助吾儿坤采纳,获得10
8秒前
vv发布了新的文献求助20
8秒前
8秒前
8秒前
任性铅笔完成签到 ,获得积分10
9秒前
9秒前
9秒前
11秒前
程志鹏发布了新的文献求助10
12秒前
ShujunOvO发布了新的文献求助10
13秒前
13秒前
炒饭发布了新的文献求助10
13秒前
小马甲应助汎影采纳,获得10
14秒前
大模型应助relink采纳,获得10
14秒前
香蕉班发布了新的文献求助30
14秒前
科研通AI2S应助GAOSAN采纳,获得10
15秒前
搜集达人应助王大爷采纳,获得10
16秒前
斯文败类应助靓丽翠琴采纳,获得10
16秒前
17秒前
马某人发布了新的文献求助10
17秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4138957
求助须知:如何正确求助?哪些是违规求助? 3675778
关于积分的说明 11619372
捐赠科研通 3369949
什么是DOI,文献DOI怎么找? 1851181
邀请新用户注册赠送积分活动 914368
科研通“疑难数据库(出版商)”最低求助积分说明 829198