Multi-region radiomics for artificially intelligent diagnosis of breast cancer using multimodal ultrasound

人工智能 乳腺超声检查 接收机工作特性 计算机科学 模式识别(心理学) 乳腺癌 支持向量机 超声波 无线电技术 人工神经网络 模态(人机交互) 医学 放射科 癌症 机器学习 乳腺摄影术 内科学
作者
Xu Zhou,Yuqun Wang,Man Chen,Qi Zhang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:149: 105920-105920 被引量:42
标识
DOI:10.1016/j.compbiomed.2022.105920
摘要

The ultrasound (US) diagnosis of breast cancer is usually based on a single-region of a whole breast tumor from a single ultrasonic modality, which limits the diagnostic performance. Multiple regions on multimodal US images of breast tumors may all have useful information for diagnosis. This study aimed to propose a multi-region radiomics approach with multimodal US for artificially intelligent diagnosis of malignant and benign breast tumors.Firstly, radiomics features were extracted from five regions of interest (ROIs) on B-mode US and contrast-enhanced ultrasound (CEUS) images, including intensity statistics, gray-level co-occurrence matrix texture features and binary texture features. The multiple ROIs included the whole tumor region, strongest perfusion region, marginal region and surrounding region. Secondly, a deep neural network, composed of the point-wise gated Boltzmann machine and the restricted Boltzmann machine, was adopted to comprehensively learn and select features. Thirdly, the support vector machine was used for classification between benign and malignant breast tumors. Finally, five single-region classification models were generated from five ROIs, and they were fused to form an integrated classification model.Experimental evaluation was conducted on multimodal US images of breast from 187 patients with breast tumors (68 malignant and 119 benign). Under five-fold cross-validation, the classification accuracy, sensitivity, specificity, Youden's index and area under the receiver operating characteristic curve (AUC) with our model were 87.1% ± 3.3%, 77.4% ± 11.8%, 92.4% ± 7.2%, 69.8% ± 8.6% and 0.849 ± 0.043, respectively. Our model was significantly better than single-region single-modal methods in terms of the AUC and accuracy (p < 0.05).In addition to the whole tumor region, the other regions including the strongest perfusion region, marginal region and surrounding region on US images can assist breast cancer diagnosis. The multi-region multimodal radiomics model achieved the best classification results. Our artificially intelligent model would be potentially useful for clinical diagnosis of breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨淋沐风完成签到,获得积分10
2秒前
2秒前
情怀应助耶嘿采纳,获得10
2秒前
科研通AI2S应助Rui_Rui采纳,获得10
2秒前
小赵完成签到 ,获得积分10
2秒前
Z信C992发布了新的文献求助10
3秒前
3秒前
3秒前
ghroth完成签到,获得积分10
3秒前
xl1990发布了新的文献求助10
4秒前
4秒前
吃好喝好发布了新的文献求助10
5秒前
完美世界应助roy采纳,获得10
6秒前
Chloe发布了新的文献求助10
6秒前
好好学习发布了新的文献求助10
7秒前
ZX发布了新的文献求助10
8秒前
kai完成签到,获得积分10
8秒前
花花子发布了新的文献求助10
8秒前
haha111发布了新的文献求助10
8秒前
ryl完成签到,获得积分10
9秒前
hakunamatata完成签到 ,获得积分10
9秒前
dai发布了新的文献求助10
10秒前
科研通AI6应助洛城l采纳,获得10
10秒前
善学以致用应助符雁采纳,获得10
11秒前
所所应助xx采纳,获得10
12秒前
李嘉衡完成签到 ,获得积分10
13秒前
13秒前
路灯完成签到,获得积分10
15秒前
15秒前
天天快乐应助超级亿先采纳,获得10
15秒前
大侠完成签到 ,获得积分10
16秒前
懒洋洋完成签到,获得积分10
16秒前
Hello应助落寞之云采纳,获得10
16秒前
小二郎应助活力的青枫采纳,获得10
16秒前
苏翰英发布了新的文献求助10
16秒前
橱窗发布了新的文献求助10
17秒前
17秒前
17秒前
17秒前
丽丽发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《机器学习——数据表示学习及应用》 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Fiction e non fiction: storia, teorie e forme 500
Routledge Handbook on Spaces of Mental Health and Wellbeing 500
Elle ou lui ? Histoire des transsexuels en France 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5321937
求助须知:如何正确求助?哪些是违规求助? 4463561
关于积分的说明 13890461
捐赠科研通 4354764
什么是DOI,文献DOI怎么找? 2392002
邀请新用户注册赠送积分活动 1385582
关于科研通互助平台的介绍 1355331