DTST: A Dual-aspect Time Series Transformer Model for Fault Diagnosis of Space Power System

变压器 对偶(语法数字) 计算机科学 电子工程 电力系统 系列(地层学) 断层(地质) 电气工程 功率(物理) 工程类 电压 物理 量子力学 生物 文学类 地质学 艺术 古生物学 地震学
作者
Zhiqiang Xu,Mila T. Du,Yujie Zhang,Qiang Miao
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tim.2024.3396856
摘要

Fault diagnosis is one of the key technologies for maintaining the reliability and safety of space power systems. High-precision fault diagnosis is crucial to ensuring the normal operation of the system. In recent years, fault diagnosis methods based on traditional deep learning models have matured, but these models have problems capturing long distance dependencies in sequences and are limited to modeling in the temporal dimension. To address these challenges, this paper proposes a novel fault diagnosis method for space power systems, namely Dual-aspect Time Series Transformer (DTST). DTST first adopts a token sequence generation method to decompose the data into two sets of sequence tokens in the temporal and spatial dimensions. Then, by introducing the Transformer, it obtains class tokens for these two sets of sequence tokens and merges them into a global class token for performing fault diagnosis tasks. To validate the rationality of the DTST structural design, this paper conducts comprehensive experiments on the space power system dataset and real telemetry dataset. The experimental results show that, compared to single-structure models, DTST with a dual-structure design performs superiorly in diagnostic performance. Meanwhile, the fusion of dual-structure design has also been adequately demonstrated. Compared to traditional deep learning models and Transformer variant models, DTST demonstrates superior performance and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hq完成签到,获得积分10
刚刚
Belinda完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
lhq完成签到,获得积分10
3秒前
简默完成签到,获得积分10
3秒前
施宇宙发布了新的文献求助10
5秒前
5秒前
he发布了新的文献求助10
5秒前
5秒前
小HO完成签到,获得积分10
6秒前
英姑应助旺德福采纳,获得10
6秒前
大胆香菇完成签到,获得积分10
7秒前
7秒前
虚幻手套发布了新的文献求助10
7秒前
sunshine应助Zhao采纳,获得10
8秒前
SW完成签到,获得积分10
8秒前
曾经曼梅完成签到,获得积分10
11秒前
哈哈完成签到,获得积分10
11秒前
干果发布了新的文献求助10
11秒前
大胆香菇发布了新的文献求助30
11秒前
119号元素发布了新的文献求助10
12秒前
牙膏完成签到,获得积分10
13秒前
13秒前
hhh发布了新的文献求助10
13秒前
14秒前
爆米花应助小何同学采纳,获得10
14秒前
16秒前
李新宇完成签到,获得积分10
16秒前
善学以致用应助干果采纳,获得10
16秒前
DI完成签到,获得积分10
17秒前
19秒前
奔奔完成签到,获得积分10
19秒前
19秒前
19秒前
今后应助愉快巧荷采纳,获得10
20秒前
Orange应助ACEmeng采纳,获得10
20秒前
20秒前
太叔夜南完成签到,获得积分10
21秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799740
求助须知:如何正确求助?哪些是违规求助? 3345074
关于积分的说明 10323372
捐赠科研通 3061599
什么是DOI,文献DOI怎么找? 1680474
邀请新用户注册赠送积分活动 807075
科研通“疑难数据库(出版商)”最低求助积分说明 763462