亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder

伪氨基酸组成 水准点(测量) 判别式 人工智能 支持向量机 分类器(UML) 编码器 计算机科学 氨基酸 机器学习 模式识别(心理学) 生物化学 生物 操作系统 大地测量学 二肽 地理
作者
Hina Ghafoor,Muhammad Nabeel Asim,Muhammad Ali Ibrahim,Sheraz Ahmed,Andreas Dengel
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:176: 108538-108538 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108538
摘要

Anticancer peptides (ACPs) key properties including bioactivity, high efficacy, low toxicity, and lack of drug resistance make them ideal candidates for cancer therapies. To deeply explore the potential of ACPs and accelerate development of cancer therapies, although 53 Artificial Intelligence supported computational predictors have been developed for ACPs and non ACPs classification but only one predictor has been developed for ACPs functional types annotations. Moreover, these predictors extract amino acids distribution patterns to transform peptides sequences into statistical vectors that are further fed to classifiers for discriminating peptides sequences and annotating peptides functional classes. Overall, these predictors remain fail in extracting diverse types of amino acids distribution patterns from peptide sequences. The paper in hand presents a unique CARE encoder that transforms peptides sequences into statistical vectors by extracting 4 different types of distribution patterns including correlation, distribution, composition, and transition. Across public benchmark dataset, proposed encoder potential is explored under two different evaluation settings namely; intrinsic and extrinsic. Extrinsic evaluation indicates that 12 different machine learning classifiers achieve superior performance with the proposed encoder as compared to 55 existing encoders. Furthermore, an intrinsic evaluation reveals that, unlike existing encoders, the proposed encoder generates more discriminative clusters for ACPs and non-ACPs classes. Across 8 public benchmark ACPs and non-ACPs classification datasets, proposed encoder and Adaboost classifier based CAPTURE predictor outperforms existing predictors with an average accuracy, recall and MCC score of 1%, 4%, and 2% respectively. In generalizeability evaluation case study, across 7 benchmark anti-microbial peptides classification datasets, CAPTURE surpasses existing predictors by an average AU-ROC of 2%. CAPTURE predictive pipeline along with label powerset method outperforms state-of-the-art ACPs functional types predictor by 5%, 5%, 5%, 6%, and 3% in terms of average accuracy, subset accuracy, precision, recall, and F1 respectively. CAPTURE web application is available at https://sds_genetic_analysis.opendfki.de/CAPTURE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Wfmmm发布了新的文献求助10
3秒前
ZYP应助一剑白采纳,获得10
40秒前
你好完成签到 ,获得积分0
49秒前
ZYP应助一剑白采纳,获得10
53秒前
Whale完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
烟花应助刻苦的青文采纳,获得10
1分钟前
刻苦的青文完成签到,获得积分10
1分钟前
2分钟前
空2完成签到 ,获得积分0
2分钟前
杪夏二八完成签到 ,获得积分10
2分钟前
小蘑菇应助Wfmmm采纳,获得10
2分钟前
2分钟前
3分钟前
3分钟前
Wfmmm发布了新的文献求助10
3分钟前
null_完成签到 ,获得积分20
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
钱邦国完成签到 ,获得积分10
4分钟前
zhuosht完成签到 ,获得积分10
4分钟前
跳跃的鹏飞完成签到 ,获得积分10
4分钟前
iShine完成签到 ,获得积分10
5分钟前
5分钟前
6分钟前
波波完成签到 ,获得积分10
6分钟前
Picopy完成签到,获得积分10
6分钟前
aq22完成签到 ,获得积分10
7分钟前
科研通AI5应助忐忑的如冰采纳,获得10
7分钟前
7分钟前
8分钟前
书中魂我自不理会完成签到 ,获得积分10
8分钟前
8分钟前
kiki完成签到,获得积分10
8分钟前
8分钟前
kiki发布了新的文献求助10
8分钟前
9分钟前
李健应助keros采纳,获得10
10分钟前
11分钟前
英俊的铭应助执源星采纳,获得10
11分钟前
高分求助中
新中国出版事业的先驱胡愈之 1500
Essentials of Mental Health 800
Narcissistic Personality Disorder 700
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Parametric Random Vibration 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3853922
求助须知:如何正确求助?哪些是违规求助? 3396440
关于积分的说明 10596808
捐赠科研通 3118347
什么是DOI,文献DOI怎么找? 1718580
邀请新用户注册赠送积分活动 827620
科研通“疑难数据库(出版商)”最低求助积分说明 776926