亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CAPTURE: Comprehensive anti-cancer peptide predictor with a unique amino acid sequence encoder

伪氨基酸组成 水准点(测量) 判别式 人工智能 支持向量机 分类器(UML) 编码器 计算机科学 氨基酸 机器学习 模式识别(心理学) 生物化学 生物 操作系统 大地测量学 二肽 地理
作者
Hina Ghafoor,Muhammad Nabeel Asim,Muhammad Ali Ibrahim,Sheraz Ahmed,Andreas Dengel
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:176: 108538-108538 被引量:2
标识
DOI:10.1016/j.compbiomed.2024.108538
摘要

Anticancer peptides (ACPs) key properties including bioactivity, high efficacy, low toxicity, and lack of drug resistance make them ideal candidates for cancer therapies. To deeply explore the potential of ACPs and accelerate development of cancer therapies, although 53 Artificial Intelligence supported computational predictors have been developed for ACPs and non ACPs classification but only one predictor has been developed for ACPs functional types annotations. Moreover, these predictors extract amino acids distribution patterns to transform peptides sequences into statistical vectors that are further fed to classifiers for discriminating peptides sequences and annotating peptides functional classes. Overall, these predictors remain fail in extracting diverse types of amino acids distribution patterns from peptide sequences. The paper in hand presents a unique CARE encoder that transforms peptides sequences into statistical vectors by extracting 4 different types of distribution patterns including correlation, distribution, composition, and transition. Across public benchmark dataset, proposed encoder potential is explored under two different evaluation settings namely; intrinsic and extrinsic. Extrinsic evaluation indicates that 12 different machine learning classifiers achieve superior performance with the proposed encoder as compared to 55 existing encoders. Furthermore, an intrinsic evaluation reveals that, unlike existing encoders, the proposed encoder generates more discriminative clusters for ACPs and non-ACPs classes. Across 8 public benchmark ACPs and non-ACPs classification datasets, proposed encoder and Adaboost classifier based CAPTURE predictor outperforms existing predictors with an average accuracy, recall and MCC score of 1%, 4%, and 2% respectively. In generalizeability evaluation case study, across 7 benchmark anti-microbial peptides classification datasets, CAPTURE surpasses existing predictors by an average AU-ROC of 2%. CAPTURE predictive pipeline along with label powerset method outperforms state-of-the-art ACPs functional types predictor by 5%, 5%, 5%, 6%, and 3% in terms of average accuracy, subset accuracy, precision, recall, and F1 respectively. CAPTURE web application is available at https://sds_genetic_analysis.opendfki.de/CAPTURE.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
taki应助医研采纳,获得10
1秒前
美满尔蓝完成签到,获得积分10
4秒前
mellow完成签到,获得积分10
41秒前
call_me_gentry完成签到,获得积分10
46秒前
1分钟前
lixuebin完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
番茄炒蛋完成签到,获得积分10
1分钟前
Enso发布了新的文献求助10
1分钟前
1分钟前
Alan发布了新的文献求助10
1分钟前
传奇3应助Enso采纳,获得10
1分钟前
1分钟前
Alan完成签到,获得积分20
1分钟前
勤劳初雪完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
籍新如发布了新的文献求助10
2分钟前
在水一方应助科研通管家采纳,获得10
2分钟前
搜集达人应助闪闪的书白采纳,获得10
2分钟前
2分钟前
Wanghongwei发布了新的文献求助30
2分钟前
blenx完成签到,获得积分10
2分钟前
3分钟前
hhn发布了新的文献求助10
3分钟前
Min发布了新的文献求助10
3分钟前
布同完成签到,获得积分10
3分钟前
Min完成签到,获得积分10
3分钟前
CRUSADER完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
4分钟前
花生糖拌炸酱面完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
医研完成签到,获得积分10
5分钟前
天天快乐应助lome采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
A Systemic-Functional Study of Language Choice in Singapore 400
Architectural Corrosion and Critical Infrastructure 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4869877
求助须知:如何正确求助?哪些是违规求助? 4160705
关于积分的说明 12902034
捐赠科研通 3915658
什么是DOI,文献DOI怎么找? 2150478
邀请新用户注册赠送积分活动 1168832
关于科研通互助平台的介绍 1071845