Raw infrared image enhancement via an inverted framework based on infrared basic prior

计算机科学 人工智能 红外线的 对比度(视觉) 噪音(视频) 计算机视觉 图像(数学) 突出 图像增强 模式识别(心理学) 光学 物理
作者
Yu Wang,Xiubao Sui,Yihong Wang,Yuan Liu,Qian Chen
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:253: 124314-124314 被引量:4
标识
DOI:10.1016/j.eswa.2024.124314
摘要

Existing raw infrared image enhancement methods can effectively compress image and improve contrast. However, there still exist limitations. First, enhanced images are often over-exposed. Second, a high contrast but low noise enhanced image is difficult to be obtained due to the fact that the noise level increases with contrast. Third, the targets are not sufficiently salient in enhanced image. In this paper, we design an inverted enhancement framework to address the three limitations simultaneously. Specifically, we analyse the widely recognized features of raw infrared image and call them infrared image basic prior. That is, infrared detectors are often used to detect targets under special conditions and our attention mechanism is to focus on high radiation objects, but there are few targets in the scene. Then we modify the traditional image enhancement framework into an inverted framework based on infrared image basic prior and design an inverted nonlinear gray mapping curve, which avoids over-exposure and noise over-amplification. Furthermore, result is further improved by using layer decomposition model and gamma correction. Enhanced result yields the targets of our main interest. Finally, the extended applications are performed and show ability to stimulate the effectiveness of algorithms of related fields. Experiments show that our approach yields better results than state-of-the-art methods. A video of results is provided at https://github.com/wangyuro/Datashare1.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
somnus应助好运连连采纳,获得10
1秒前
sdahjjyk发布了新的文献求助10
2秒前
3秒前
筝zheng完成签到,获得积分10
4秒前
4秒前
4秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
康康发布了新的文献求助10
7秒前
善学以致用应助liwenqiang采纳,获得10
7秒前
斯文败类应助yzy采纳,获得10
9秒前
chaos完成签到,获得积分10
10秒前
10秒前
多喝水完成签到,获得积分10
10秒前
李欣宇发布了新的文献求助10
10秒前
zhen9203发布了新的文献求助10
11秒前
12秒前
柒佑完成签到 ,获得积分10
13秒前
13秒前
angelsister完成签到,获得积分20
14秒前
14秒前
harmory完成签到,获得积分20
15秒前
Akim应助冷酷芷雪采纳,获得10
15秒前
星宿陨完成签到 ,获得积分10
18秒前
所所应助yongtao采纳,获得10
18秒前
大力超大力完成签到 ,获得积分10
19秒前
傲娇的昊焱完成签到,获得积分20
19秒前
19秒前
20秒前
今天也不想搬砖完成签到,获得积分10
20秒前
LIUJC完成签到,获得积分10
20秒前
20秒前
不睡懒觉关注了科研通微信公众号
21秒前
21秒前
21秒前
科目三应助唠叨的机器猫采纳,获得10
21秒前
21秒前
23秒前
bean完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954534
求助须知:如何正确求助?哪些是违规求助? 3500649
关于积分的说明 11100400
捐赠科研通 3231158
什么是DOI,文献DOI怎么找? 1786297
邀请新用户注册赠送积分活动 869936
科研通“疑难数据库(出版商)”最低求助积分说明 801719