Analysis of nasopharyngeal carcinoma risk factors with Bayesian networks

鼻咽癌 计算机科学 贝叶斯网络 人口 机器学习 人工智能 图形 数据挖掘 环境卫生 医学 理论计算机科学 外科 放射治疗
作者
Alexandre Aussem,Sérgio Rodrigues de Morais,Marilys Corbex
出处
期刊:Artificial Intelligence in Medicine [Elsevier BV]
卷期号:54 (1): 53-62 被引量:18
标识
DOI:10.1016/j.artmed.2011.09.002
摘要

We propose a new graphical framework for extracting the relevant dietary, social and environmental risk factors that are associated with an increased risk of nasopharyngeal carcinoma (NPC) on a case–control epidemiologic study that consists of 1289 subjects and 150 risk factors. This framework builds on the use of Bayesian networks (BNs) for representing statistical dependencies between the random variables. We discuss a novel constraint-based procedure, called Hybrid Parents and Children (HPC), that builds recursively a local graph that includes all the relevant features statistically associated to the NPC, without having to find the whole BN first. The local graph is afterwards directed by the domain expert according to his knowledge. It provides a statistical profile of the recruited population, and meanwhile helps identify the risk factors associated to NPC. Extensive experiments on synthetic data sampled from known BNs show that the HPC outperforms state-of-the-art algorithms that appeared in the recent literature. From a biological perspective, the present study confirms that chemical products, pesticides and domestic fume intake from incomplete combustion of coal and wood are significantly associated with NPC risk. These results suggest that industrial workers are often exposed to noxious chemicals and poisonous substances that are used in the course of manufacturing. This study also supports previous findings that the consumption of a number of preserved food items, like house made proteins and sheep fat, are a major risk factor for NPC. BNs are valuable data mining tools for the analysis of epidemiologic data. They can explicitly combine both expert knowledge from the field and information inferred from the data. These techniques therefore merit consideration as valuable alternatives to traditional multivariate regression techniques in epidemiologic studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bingsu108完成签到,获得积分10
刚刚
你滴勋宗啊完成签到,获得积分10
刚刚
搜集达人应助满眼星辰采纳,获得10
1秒前
1秒前
执着幻桃完成签到,获得积分10
2秒前
唐诗鑫完成签到,获得积分20
2秒前
2秒前
4秒前
温暖的台灯完成签到,获得积分20
4秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
今后应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
我是老大应助科研通管家采纳,获得10
6秒前
传奇3应助科研通管家采纳,获得10
6秒前
bkagyin应助科研通管家采纳,获得10
6秒前
6秒前
George发布了新的文献求助10
6秒前
7秒前
haly发布了新的文献求助10
7秒前
自由宛筠发布了新的文献求助10
9秒前
Dawn完成签到,获得积分10
10秒前
唐诗鑫发布了新的文献求助10
13秒前
14秒前
xiaxianong完成签到,获得积分10
15秒前
科研通AI5应助派大宝采纳,获得30
16秒前
River完成签到,获得积分10
18秒前
joy发布了新的文献求助10
18秒前
19秒前
科研肥料发布了新的文献求助10
19秒前
脑洞疼应助西海小甜豆采纳,获得10
19秒前
爆米花应助花开那年采纳,获得10
20秒前
动听的飞松完成签到,获得积分10
21秒前
不想干活应助Joshua采纳,获得10
22秒前
23秒前
满眼星辰发布了新的文献求助10
24秒前
科研肥料完成签到,获得积分10
24秒前
26秒前
虫虫完成签到,获得积分10
26秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
2024-2030年中国石英材料行业市场竞争现状及未来趋势研判报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4151289
求助须知:如何正确求助?哪些是违规求助? 3687408
关于积分的说明 11649117
捐赠科研通 3380293
什么是DOI,文献DOI怎么找? 1855079
邀请新用户注册赠送积分活动 916909
科研通“疑难数据库(出版商)”最低求助积分说明 830724