亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Characterisation and modelling of the plastic material behaviour and its application in sheet metal forming simulation

金属薄板 材料性能 硬化(计算) 应变硬化指数 物流 汽车工业 材料科学 成形工艺 可塑性 计算机科学 工程类 复合材料 生态学 生物 航空航天工程 图层(电子)
作者
H. Vegter,C. H. L. J. ten Horn,Yuguo An,Eisso Atzema,H.H. Pijlman,A.H. van den Boogaard,Han Huétink
摘要

The application of simulation models in sheet metal forming in automotive industry has proven to be beneficial to reduce tool costs in the designing stage and for optimising current processes. Moreover, it is a promising tool for a material supplier to optimise material choice and development for both its final application and its forming capacity. The present practice requires a high predictive value of these simulations. The material models in these simulation models need to be developed sufficiently to meet the requirement of the predictions. For the determination of parameters for the material models, mechanical tests at different strain paths are necessary 1. Usually, the material models implemented in the simulation models are not able to describe the plastic material behaviour during monotonic strain paths sufficiently accurate 2. This is true for the strain hardening model, the influence of strain rate and the description of the yield locus in these models. A first stage is to implement the improved material models which describe this single strain path behaviour in a better way. In this work, different yield criteria, a hardening model and their comparison to experiments are described extensively. The improved material model has been validated initially on forming limit curves which are determined experimentally with Nakazima strips. These results will be compared with predictions using Marciniak-Kuczinsky-analysis with both the new material model and the conventional material model. Finally, the validation on real pressed products will be shown by comparing simulation results using different material models with the experimental data. The next challenge is the description of the material after a change of strain path. Experimental evidence given here shows that this behaviour cannot be treated using the classical approach of an equivalent strain as the only history variable.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
量子星尘发布了新的文献求助10
11秒前
谭代涛发布了新的文献求助10
14秒前
27秒前
科研通AI6应助Yan采纳,获得10
41秒前
婼汐完成签到 ,获得积分10
1分钟前
桐桐应助Yan采纳,获得10
1分钟前
1分钟前
在水一方应助谭代涛采纳,获得10
2分钟前
2分钟前
John发布了新的文献求助10
2分钟前
2分钟前
谭代涛发布了新的文献求助10
2分钟前
明芬发布了新的文献求助10
2分钟前
犬来八荒发布了新的文献求助30
2分钟前
顾矜应助犬来八荒采纳,获得10
3分钟前
Yan发布了新的文献求助10
3分钟前
3分钟前
BowieHuang应助科研通管家采纳,获得10
3分钟前
3分钟前
Yan发布了新的文献求助10
3分钟前
4分钟前
4分钟前
Puan发布了新的文献求助10
4分钟前
明理太君发布了新的文献求助10
4分钟前
zxcvvbb1001完成签到 ,获得积分10
4分钟前
善学以致用应助Puan采纳,获得10
4分钟前
cy0824完成签到 ,获得积分10
4分钟前
Yan发布了新的文献求助10
4分钟前
5分钟前
思源应助Yan采纳,获得80
5分钟前
薛定谔的猫完成签到,获得积分10
5分钟前
BowieHuang应助科研通管家采纳,获得10
5分钟前
酷波er应助景木游采纳,获得10
5分钟前
研白完成签到 ,获得积分10
6分钟前
呜呼完成签到,获得积分10
6分钟前
6分钟前
Yan关注了科研通微信公众号
7分钟前
7分钟前
Yan发布了新的文献求助80
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599818
求助须知:如何正确求助?哪些是违规求助? 4685557
关于积分的说明 14838621
捐赠科研通 4671576
什么是DOI,文献DOI怎么找? 2538288
邀请新用户注册赠送积分活动 1505554
关于科研通互助平台的介绍 1470945