支持向量机
计算机科学
核(代数)
核方法
相关向量机
人工智能
模式识别(心理学)
数学
组合数学
作者
Shouqiang Kang,Yujing Wang,Guangxue Yang,В. И. Микулович
出处
期刊:Journal of Computers
[International Academy Publishing (IAP)]
日期:2013-10-01
卷期号:8 (10)
标识
DOI:10.4304/jcp.8.10.2701-2705
摘要
Sphere structured support vector machine is a multi-classification algorithm. The algorithm separately constructs sphere for each class sample data, so the complex degree of the quadratic programming is reduced and it is easier to extend new samples. But, kernel parameter selection of sphere structured support vector machine needs to predetermine the parameter search interval. For eliminating human experience factors, a kernel parameter optimization method based on sphere center distance is proposed. Experimental results show that the proposed method can greatly shorten the training time in the case of the average classification accuracy of the classifier is not reduced.
科研通智能强力驱动
Strongly Powered by AbleSci AI