观察员(物理)
趋同(经济学)
积分器
迭代学习控制
理论(学习稳定性)
控制理论(社会学)
鉴定(生物学)
估计理论
计算机科学
系统标识
数学
估计
国家(计算机科学)
迭代法
数学优化
算法
人工智能
机器学习
工程类
控制(管理)
数据挖掘
带宽(计算)
生物
物理
经济增长
经济
植物
系统工程
量子力学
度量(数据仓库)
计算机网络
作者
Wen Chen,F.N. Chowdhury
标识
DOI:10.1080/00207720601042934
摘要
This article presents the design of an iterative learning observer (ILO) for the purpose of estimating system states while simultaneously identifying time-varying parameters. The proposed ILO uses a novel updating mechanism to identify time-varying parameters instead of using integrators which are commonly used in classical adaptive observers to identify constant parameters while estimating system states. The main idea behind the design of the ILO is the use of learning, i.e. previous information is combined into the ILO for identifying time-varying parameters in real time. Stability and convergence of state and parameter estimation errors are established and proven. An illustrative example exhibits the effectiveness of the proposed ILO.
科研通智能强力驱动
Strongly Powered by AbleSci AI