A weakly singular form of the hypersingular boundary integral equation applied to 3-D acoustic wave problems

数学 离散化 数学分析 积分方程 奇点 边界(拓扑) 奇异积分 功能(生物学) 边界元法 物理 进化生物学 生物 热力学 有限元法
作者
Yijun Liu,F. J. Rizzo
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:96 (2): 271-287 被引量:139
标识
DOI:10.1016/0045-7825(92)90136-8
摘要

The composite boundary integral equation (BIE) formulation, using a linear combination of the conventional BIE and the hypersingular BIE, emerges as the most effective and efficient formula for acoustic wave problems in an exterior medium which is free of the well-known fictitious eigen-frequency difficulty. The crucial part in implementing this formulation is dealing with the hypersingular integrals. Various regularization procedures in the literature give rise, in general, to integrals which are still difficult and/or extremely time consuming to evaluate or are limited to the use of special, usually flat, boundary elements. In this paper, a general form of the hypersingular BIE is developed for 3-D acoustic wave problems, which contains at most weakly singular integrals. This weakly singular form can be derived by employing certain integral identities involving the static Green's function. It is shown that the discretization of this weakly singular form of the hypersingular BIE is straightforward and the same collocation procedures and regular quadrature as that used for conventional BIEs are sufficient to compute all the integrals involved. Computing times are only slightly longer than with conventional BIEs. The C1 smoothness requirement imposed on the density function for existence of the hypersingular BIEs and the possibility of relaxing this requirement are discussed. Three kinds of boundary elements, having different smoothness features, are employed. Numerical results are given for scattering from a rigid sphere at the fictitious frequencies, for values of wavenumber from π to 5π. In essence, with the methodology in this paper the fictitious eigenfrequency difficulty, long associated with the BIE for exterior problems, should no longer be a troublesome issue.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱼茫发布了新的文献求助10
刚刚
h41692011发布了新的文献求助10
1秒前
1秒前
2秒前
pumpkin完成签到 ,获得积分10
2秒前
corbyn发布了新的文献求助10
2秒前
orixero应助魔幻的紊采纳,获得10
6秒前
无花果应助zzz采纳,获得10
7秒前
汉堡包应助木木三采纳,获得10
7秒前
隐形曼青应助是小越啊采纳,获得10
8秒前
雾失楼台发布了新的文献求助10
8秒前
8秒前
10秒前
13秒前
13秒前
13秒前
路过发布了新的文献求助10
13秒前
lll发布了新的文献求助10
14秒前
Benny完成签到,获得积分10
15秒前
Rand完成签到,获得积分10
15秒前
再睡一夏完成签到 ,获得积分10
16秒前
咖啡先生发布了新的文献求助10
16秒前
富二蛋发布了新的文献求助10
16秒前
科研通AI5应助dl采纳,获得10
17秒前
HEAUBOOK应助hkh采纳,获得10
17秒前
稳重奇异果应助hkh采纳,获得10
18秒前
科研通AI2S应助hkh采纳,获得10
18秒前
稳重奇异果应助hkh采纳,获得10
18秒前
稳重奇异果应助hkh采纳,获得10
18秒前
科研通AI2S应助hkh采纳,获得10
18秒前
HEAUBOOK应助hkh采纳,获得10
18秒前
科研通AI2S应助hkh采纳,获得10
18秒前
科研通AI2S应助hkh采纳,获得10
18秒前
zy发布了新的文献求助10
19秒前
魔幻的紊发布了新的文献求助10
19秒前
20秒前
领导范儿应助科研通管家采纳,获得10
21秒前
SciGPT应助科研通管家采纳,获得10
21秒前
李爱国应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209047
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757921