Characterization of a microfluidic in vitro model of the blood-brain barrier (μBBB)

血脑屏障 紧密连接 体外 体内 药物输送 生物物理学 磁导率 化学 细胞生物学 材料科学 生物 中枢神经系统 纳米技术 生物化学 神经科学 生物技术
作者
R. Booth,Hanseup Kim
出处
期刊:Lab on a Chip [Royal Society of Chemistry]
卷期号:12 (10): 1784-1784 被引量:660
标识
DOI:10.1039/c2lc40094d
摘要

The blood-brain barrier (BBB), a unique selective barrier for the central nervous system (CNS), hinders the passage of most compounds to the CNS, complicating drug development. Innovative in vitro models of the BBB can provide useful insights into its role in CNS disease progression and drug delivery. Static transwell models lack fluidic shear stress, while the conventional dynamic in vitro BBB lacks a thin dual cell layer interface. To address both limitations, we developed a microfluidic blood-brain barrier (μBBB) which closely mimics the in vivo BBB with a dynamic environment and a comparatively thin culture membrane (10 μm). To test validity of the fabricated BBB model, μBBBs were cultured with b.End3 endothelial cells, both with and without co-cultured C8-D1A astrocytes, and their key properties were tested with optical imaging, trans-endothelial electrical resistance (TEER), and permeability assays. The resultant imaging of ZO-1 revealed clearly expressed tight junctions in b.End3 cells, Live/Dead assays indicated high cell viability, and astrocytic morphology of C8-D1A cells were confirmed by ESEM and GFAP immunostains. By day 3 of endothelial culture, TEER levels typically exceeded 250 Ω cm2 in μBBB co-cultures, and 25 Ω cm2 for transwell co-cultures. Instantaneous transient drop in TEER in response to histamine exposure was observed in real-time, followed by recovery, implying stability of the fabricated μBBB model. Resultant permeability coefficients were comparable to previous BBB models, and were significantly increased at higher pH (>10). These results demonstrate that the developed μBBB system is a valid model for some studies of BBB function and drug delivery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Alden发布了新的文献求助10
3秒前
大力惜芹完成签到 ,获得积分10
4秒前
5秒前
oywc发布了新的文献求助30
5秒前
5秒前
zero1832完成签到,获得积分10
10秒前
10秒前
IDHNAPHO发布了新的文献求助10
10秒前
欢呼平灵发布了新的文献求助10
12秒前
13秒前
英姑应助清飏采纳,获得30
13秒前
14秒前
鱼鱼鱼发布了新的文献求助10
15秒前
15秒前
16秒前
义气如萱完成签到,获得积分10
16秒前
奋斗不二完成签到,获得积分10
16秒前
小蘑菇应助IDHNAPHO采纳,获得10
19秒前
lytelope发布了新的文献求助10
19秒前
义气如萱发布了新的文献求助10
20秒前
20秒前
三把骨刀关注了科研通微信公众号
21秒前
zjz发布了新的文献求助10
21秒前
22秒前
鱼鱼鱼完成签到,获得积分10
22秒前
谨慎天问发布了新的文献求助10
24秒前
欢呼平灵完成签到,获得积分20
25秒前
小小二完成签到,获得积分10
25秒前
OcRyf5发布了新的文献求助10
27秒前
lytelope完成签到,获得积分10
28秒前
优美飞柏完成签到,获得积分10
32秒前
oywc完成签到,获得积分10
34秒前
37秒前
奋斗的蜗牛应助芷莯采纳,获得10
38秒前
SS完成签到,获得积分10
39秒前
40秒前
41秒前
答案说明所有完成签到 ,获得积分10
42秒前
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782130
求助须知:如何正确求助?哪些是违规求助? 3327565
关于积分的说明 10232237
捐赠科研通 3042513
什么是DOI,文献DOI怎么找? 1670024
邀请新用户注册赠送积分活动 799592
科研通“疑难数据库(出版商)”最低求助积分说明 758825