Towards stable catalysts by controlling collective properties of supported metal nanoparticles

催化作用 材料科学 纳米电子学 纳米技术 纳米材料 纳米颗粒 微晶 金属 化学工程 粒子(生态学) 化学 冶金 有机化学 海洋学 地质学 工程类
作者
Gonzalo Prieto,Jovana Zečević,Heiner Friedrich,Krijn P. de Jong,Petra E. de Jongh
出处
期刊:Nature Materials [Nature Portfolio]
卷期号:12 (1): 34-39 被引量:672
标识
DOI:10.1038/nmat3471
摘要

Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage and conversion, and catalysis, but their tendency to grow into larger crystallites is an issue for their stable performance. A strategy based on controlling not only size and composition but also the location of the metal nanoparticles, now reveals the impact of their three-dimensional nanospatial distribution on their catalytic stability. Supported metal nanoparticles play a pivotal role in areas such as nanoelectronics, energy storage/conversion1 and as catalysts for the sustainable production of fuels and chemicals2,3,4. However, the tendency of nanoparticles to grow into larger crystallites is an impediment for stable performance5,6. Exemplarily, loss of active surface area by metal particle growth is a major cause of deactivation for supported catalysts7. In specific cases particle growth might be mitigated by tuning the properties of individual nanoparticles, such as size8, composition9 and interaction with the support10. Here we present an alternative strategy based on control over collective properties, revealing the pronounced impact of the three-dimensional nanospatial distribution of metal particles on catalyst stability. We employ silica-supported copper nanoparticles as catalysts for methanol synthesis as a showcase. Achieving near-maximum interparticle spacings, as accessed quantitatively by electron tomography, slows down deactivation up to an order of magnitude compared with a catalyst with a non-uniform nanoparticle distribution, or a reference Cu/ZnO/Al2O3 catalyst. Our approach paves the way towards the rational design of practically relevant catalysts and other nanomaterials with enhanced stability and functionality, for applications such as sensors, gas storage, batteries and solar fuel production.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Jasper应助1z6采纳,获得10
5秒前
落叶发布了新的文献求助50
5秒前
桐桐应助茶荼采纳,获得10
6秒前
李二牛发布了新的文献求助10
6秒前
阿琪完成签到,获得积分10
8秒前
一片叶子完成签到,获得积分10
9秒前
10秒前
10秒前
11秒前
华仔应助prim采纳,获得10
12秒前
Tayzon发布了新的文献求助10
14秒前
15秒前
木木三发布了新的文献求助10
15秒前
小王完成签到,获得积分10
16秒前
17秒前
彭于晏应助萨芬撒采纳,获得10
19秒前
传奇3应助萨芬撒采纳,获得10
19秒前
田様应助萨芬撒采纳,获得10
19秒前
SciGPT应助萨芬撒采纳,获得10
19秒前
科研通AI2S应助萨芬撒采纳,获得10
19秒前
相宜完成签到 ,获得积分10
19秒前
无辜的蜗牛完成签到 ,获得积分10
20秒前
Serena发布了新的文献求助10
20秒前
CR7完成签到,获得积分10
22秒前
Guai完成签到 ,获得积分10
23秒前
冰魂应助糕手采纳,获得10
23秒前
wsfwsf01完成签到,获得积分10
23秒前
Hello应助萨芬撒采纳,获得10
24秒前
隐形曼青应助积极的明天采纳,获得30
24秒前
今后应助科研小豪采纳,获得10
27秒前
希望天下0贩的0应助云泥采纳,获得10
28秒前
科研通AI2S应助章鱼采纳,获得10
28秒前
对方正在长头发完成签到 ,获得积分10
31秒前
斯文败类应助Serena采纳,获得10
31秒前
123完成签到 ,获得积分10
31秒前
思源应助腼腆的白开水采纳,获得10
32秒前
852应助orange采纳,获得10
32秒前
orixero应助木木三采纳,获得10
33秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976