物理
伯努利原理
欧米茄
消散
边界(拓扑)
非线性系统
粘弹性
数学物理
边值问题
数学分析
欧拉公式
核(代数)
数学
量子力学
纯数学
热力学
标识
DOI:10.3934/dcds.2002.8.675
摘要
The linear Euler-Bernoulli viscoelastic equation$u_{t t} +\Delta^2 u-\int_0^t g(t-\tau)\Delta^2 u(\tau)d\tau = 0\quad$ in $\Omega \times (0,\infty)$subject to nonlinear boundary conditions is considered. We prove existence and uniformdecay rates of the energy by assuming a nonlinear and nonlocal feedback acting on theboundary and provided that the kernel of the memory decays exponentially.
科研通智能强力驱动
Strongly Powered by AbleSci AI