Predicting PTEN mutations: an evaluation of Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome clinical features

巨头畸形 PTEN公司 考登综合征 医学 乳腺癌 病理 内科学 癌症 皮肤病科 生物 遗传学 PI3K/AKT/mTOR通路 细胞凋亡
作者
Robert Pilarski,Julie Stephens,Ryan Noss,James L. Fisher,T. Prior
出处
期刊:Journal of Medical Genetics [BMJ]
卷期号:48 (8): 505-512 被引量:154
标识
DOI:10.1136/jmg.2011.088807
摘要

Cowden syndrome (CS) is associated with benign hamartomatous lesions and risks for thyroid, breast and endometrial cancers. Bannayan-Riley-Ruvalcaba syndrome is an allelic disorder characterised by macrocephaly, intestinal polyps, lipomas, and pigmented penile macules. Diagnostic criteria for CS are based on the presence of a range of clinical features. However, prior data on the component clinical features have been based primarily on compilations of cases reported before development of consensus diagnostic criteria.This study sought to determine the clinical features most predictive of a mutation in the largest single cohort of patients with clinical testing for PTEN mutations reported to date.Molecular and clinical data were reviewed on 802 patients referred for PTEN analysis by a single laboratory.Deleterious mutations were found in 172 (21.4%) subjects. Among mutation carriers significant differences from previous reports were found for the frequencies of several clinical features, including macrocephaly, uterine fibroids, benign breast disease, and endometrial cancer. Logistic regression analyses indicated that female mutation carriers were best identified by the presence of macrocephaly, endometrial cancer, trichilemmomas, papillomatous papules, breast cancer, benign thyroid disease, and benign gastrointestinal (GI) lesions. For males, the most discriminating features were macrocephaly, lipomas, papillomatous papules, penile freckling, benign GI lesions, and benign thyroid disease. Age related differences were also identified.The mutation frequency in patients meeting CS diagnostic criteria (34%) was significantly lower than previously reported, suggesting a need for reevaluation of these criteria. A mutation prediction model has been developed which can help identify patients appropriate for PTEN testing in clinical practice.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
希望天下0贩的0应助chen采纳,获得10
1秒前
11发布了新的文献求助10
2秒前
2秒前
顺利涵菡完成签到,获得积分10
3秒前
3秒前
3秒前
不会飞的笨笨子完成签到,获得积分10
4秒前
4秒前
4秒前
淡定跳跳糖完成签到,获得积分10
5秒前
库才义发布了新的文献求助10
5秒前
科研通AI5应助轻松博超采纳,获得10
6秒前
白云发布了新的文献求助10
6秒前
养叶子完成签到,获得积分10
6秒前
CodeCraft应助Micheallee采纳,获得10
6秒前
7秒前
好运连连发布了新的文献求助10
7秒前
ww发布了新的文献求助10
7秒前
SciGPT应助张菁采纳,获得10
8秒前
不安的乞发布了新的文献求助10
9秒前
Wendy完成签到,获得积分10
9秒前
9秒前
hongcha完成签到,获得积分10
9秒前
无语的梦菲完成签到,获得积分10
10秒前
西门子云完成签到,获得积分10
10秒前
llm发布了新的文献求助30
10秒前
totoro完成签到,获得积分10
10秒前
饕餮钰钰发布了新的文献求助10
11秒前
cat完成签到,获得积分10
12秒前
realize1106发布了新的文献求助10
12秒前
孤独的珩完成签到,获得积分10
12秒前
YingxueRen完成签到,获得积分10
12秒前
12秒前
Anna发布了新的文献求助10
13秒前
14秒前
haihuhu完成签到 ,获得积分10
14秒前
14秒前
研友_VZG7GZ应助suyi采纳,获得10
15秒前
科目三应助小卫采纳,获得10
15秒前
16秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Treatise on Ocular Drug Delivery 200
studies in large plastic flow and fructure 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834665
求助须知:如何正确求助?哪些是违规求助? 3377161
关于积分的说明 10496785
捐赠科研通 3096583
什么是DOI,文献DOI怎么找? 1705068
邀请新用户注册赠送积分活动 820438
科研通“疑难数据库(出版商)”最低求助积分说明 772031