数学
秩(图论)
估计员
维数(图论)
次梯度方法
半定规划
凸优化
基质(化学分析)
对数
组合数学
数学优化
矩阵完成
应用数学
正多边形
高斯分布
统计
数学分析
材料科学
几何学
物理
量子力学
复合材料
作者
Sohail Bahmani,Kiryung Lee
摘要
We study an estimator with a convex formulation for recovery of low-rank matrices from rank-one projections. Using initial estimates of the factors of the target $d_1\times d_2$ matrix of rank-$r$, the estimator admits a practical subgradient method operating in a space of dimension $r(d_1+d_2)$. This property makes the estimator significantly more scalable than the convex estimators based on lifting and semidefinite programming. Furthermore, we present a streamlined analysis for exact recovery under the real Gaussian measurement model, as well as the partially derandomized measurement model by using the spherical $t$-design. We show that under both models the estimator succeeds, with high probability, if the number of measurements exceeds $r^2 (d_1+d_2)$ up to some logarithmic factors. This sample complexity improves on the existing results for nonconvex iterative algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI