亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Can texture analysis based on single unenhanced CT accurately predict the WHO/ISUP grading of localized clear cell renal cell carcinoma?

医学 接收机工作特性 分级(工程) 放射科 灰度级 肾透明细胞癌 逻辑回归 肾细胞癌 人工智能 内科学 核医学 病理 计算机科学 像素 工程类 土木工程
作者
Xu Wang,Ge Song,Haitao Jiang,Linfeng Zheng,Peipei Pang,Jingjing Xu
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:46 (9): 4289-4300 被引量:6
标识
DOI:10.1007/s00261-021-03090-z
摘要

The purpose was to investigate the value of texture analysis in predicting the World Health Organization (WHO)/International Society of Urological Pathology (ISUP) grading of localized clear cell renal cell carcinoma (ccRCC) based on unenhanced CT (UECT). Pathologically confirmed subjects (n = 104) with localized ccRCC who received UECT scanning were collected retrospectively for this study. All cases were classified into low grade (n = 53) and high grade (n = 51) according to the WHO/ISUP grading and were randomly divided into training set and test set as a ratio of 7:3. Using 3D-ROI segmentation on UECT images and extracted ninety-three texture features (first-order, gray-level co-occurrence matrix [GLCM], gray-level run length matrix [GLRLM], gray-level size zone matrix [GLSZM], neighboring gray tone difference matrix [NGTDM] and gray-level dependence matrix [GLDM] features). Univariate analysis and the least absolute shrinkage selection operator (LASSO) regression were used for feature dimension reduction, and logistic regression classifier was used to develop the prediction model. Using receiver operating characteristic (ROC) curve, bar chart and calibration curve to evaluate the performance of the prediction model. Dimension reduction screened out eight optimal texture features (maximum, median, dependence variance [DV], long run emphasis [LRE], run entropy [RE], gray-level non-uniformity [GLN], gray-level variance [GLV] and large area low gray-level emphasis [LALGLE]), and then the prediction model was developed according to the linear combination of these features. The accuracy, sensitivity, specificity, and AUC of the model in training set were 86.1%, 91.4%, 81.1%, and 0.937, respectively. The accuracy, sensitivity, specificity, and AUC of the model in test set were 81.2%, 81.2%, 81.2%, and 0.844, respectively. The calibration curves showed good calibration both in training set and test set (P > 0.05). This study has demonstrated that the radiomics model based on UECT texture analysis could accurately evaluate the WHO/ISUP grading of localized ccRCC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123123完成签到,获得积分20
1秒前
8秒前
mdd发布了新的文献求助10
9秒前
11秒前
13秒前
脑洞疼应助科研通管家采纳,获得30
16秒前
16秒前
CAOHOU应助科研通管家采纳,获得10
16秒前
Sandy应助科研通管家采纳,获得30
16秒前
Dravia应助科研通管家采纳,获得10
16秒前
leinei应助科研通管家采纳,获得10
16秒前
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
18秒前
22秒前
23秒前
安寒发布了新的文献求助10
27秒前
35秒前
37秒前
41秒前
明亮紫易发布了新的文献求助10
44秒前
48秒前
明亮紫易完成签到,获得积分10
50秒前
55秒前
烟花应助K先生采纳,获得10
58秒前
1分钟前
想顺利毕业给想顺利毕业的求助进行了留言
1分钟前
今后应助自信大雁采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
打打应助张大然采纳,获得10
1分钟前
K先生发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
自信大雁发布了新的文献求助10
1分钟前
1分钟前
1分钟前
nolan完成签到 ,获得积分10
1分钟前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4111581
求助须知:如何正确求助?哪些是违规求助? 3649934
关于积分的说明 11559683
捐赠科研通 3354961
什么是DOI,文献DOI怎么找? 1843150
邀请新用户注册赠送积分活动 909251
科研通“疑难数据库(出版商)”最低求助积分说明 826107