逆散射变换
逆散射问题
可积系统
孤子
数学物理
数学
反向
通气管
特征向量
齐次空间
散射
黎曼假设
Korteweg–de Vries方程
数学分析
物理
量子力学
反问题
几何学
非线性系统
作者
Weikang Xun,Shou‐Fu Tian,Tiantian Zhang
出处
期刊:Discrete and Continuous Dynamical Systems-series B
[American Institute of Mathematical Sciences]
日期:2022-01-01
卷期号:27 (9): 4941-4941
被引量:4
标识
DOI:10.3934/dcdsb.2021259
摘要
<p style='text-indent:20px;'>In this work, a generalized nonlocal Lakshmanan-Porsezian-Daniel (LPD) equation is introduced, and its integrability as an infinite dimensional Hamilton dynamic system is established. We successfully derive the inverse scattering transform (IST) of the nonlocal LPD equation. The direct scattering problem of the equation is first constructed, and some important symmetries of the eigenfunctions and the scattering data are discussed. By using a novel Left-Right Riemann-Hilbert (RH) problem, the inverse scattering problem is analyzed, and the potential function is recovered. By introducing the special conditions of reflectionless case, the time-periodic soliton solutions formula of the equation is derived successfully. Take <inline-formula><tex-math id="M1">\begin{document}$ J = \overline{J} = 1,2,3 $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M2">\begin{document}$ 4 $\end{document}</tex-math></inline-formula> for example, we obtain some interesting phenomenon such as breather-type solitons, arc solitons, three soliton and four soliton. Furthermore, the influence of parameter <inline-formula><tex-math id="M3">\begin{document}$ \delta $\end{document}</tex-math></inline-formula> on these solutions is further considered via the graphical analysis. Finally, the eigenvalues and conserved quantities are investigated under a few special initial conditions.</p>
科研通智能强力驱动
Strongly Powered by AbleSci AI