Qutrit-Inspired Fully Self-Supervised Shallow Quantum Learning Network for Brain Tumor Segmentation

计算机科学 人工智能 古特里特 分割 模式识别(心理学) 人工神经网络 卷积神经网络 量子计算机 量子位元 量子 拓扑(电路) 数学 物理 量子力学 组合数学
作者
Debanjan Konar,Siddhartha Bhattacharyya,Bijaya Ketan Panigrahi,Elizabeth Behrman
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:33 (11): 6331-6345 被引量:45
标识
DOI:10.1109/tnnls.2021.3077188
摘要

Classical self-supervised networks suffer from convergence problems and reduced segmentation accuracy due to forceful termination. Qubits or bilevel quantum bits often describe quantum neural network models. In this article, a novel self-supervised shallow learning network model exploiting the sophisticated three-level qutrit-inspired quantum information system, referred to as quantum fully self-supervised neural network (QFS-Net), is presented for automated segmentation of brain magnetic resonance (MR) images. The QFS-Net model comprises a trinity of a layered structure of qutrits interconnected through parametric Hadamard gates using an eight-connected second-order neighborhood-based topology. The nonlinear transformation of the qutrit states allows the underlying quantum neural network model to encode the quantum states, thereby enabling a faster self-organized counterpropagation of these states between the layers without supervision. The suggested QFS-Net model is tailored and extensively validated on the Cancer Imaging Archive (TCIA) dataset collected from the Nature repository. The experimental results are also compared with state-of-the-art supervised (U-Net and URes-Net architectures) and the self-supervised QIS-Net model and its classical counterpart. Results shed promising segmented outcomes in detecting tumors in terms of dice similarity and accuracy with minimum human intervention and computational resources. The proposed QFS-Net is also investigated on natural gray-scale images from the Berkeley segmentation dataset and yields promising outcomes in segmentation, thereby demonstrating the robustness of the QFS-Net model.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kouryoufu完成签到,获得积分10
刚刚
1秒前
1秒前
忧郁的惜雪完成签到,获得积分10
1秒前
壮壮完成签到 ,获得积分10
2秒前
2秒前
bkagyin应助ping采纳,获得10
2秒前
小小完成签到 ,获得积分10
2秒前
3秒前
Sailzyf发布了新的文献求助10
3秒前
qing发布了新的文献求助10
4秒前
4秒前
ding应助nnnd77采纳,获得10
4秒前
4秒前
5秒前
5秒前
嗯嗯发布了新的文献求助30
6秒前
6秒前
6秒前
7秒前
Jessica发布了新的文献求助30
7秒前
chiyudoubao发布了新的文献求助10
7秒前
8秒前
8秒前
8秒前
8秒前
Jessi发布了新的文献求助10
8秒前
马铃薯发布了新的文献求助10
9秒前
牛马发布了新的文献求助10
9秒前
qq发布了新的文献求助10
9秒前
lvyiyi发布了新的文献求助10
10秒前
隐形元彤完成签到,获得积分10
10秒前
无花果应助曼容采纳,获得10
10秒前
z'x发布了新的文献求助10
10秒前
elena完成签到,获得积分20
10秒前
万半梅完成签到,获得积分10
11秒前
古柳完成签到,获得积分10
11秒前
任性的水风完成签到,获得积分10
11秒前
武子阳完成签到 ,获得积分10
11秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
Treatise on Geochemistry (Third edition) 1600
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4713070
求助须知:如何正确求助?哪些是违规求助? 4076664
关于积分的说明 12607178
捐赠科研通 3779187
什么是DOI,文献DOI怎么找? 2087562
邀请新用户注册赠送积分活动 1113947
科研通“疑难数据库(出版商)”最低求助积分说明 991447