亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

DeepWukong

计算机科学 静态分析 程序设计语言 静态程序分析 编码(集合论) 象征性执行 多样性(控制论) 深度学习 嵌入 缓冲区溢出 人工智能 软件 软件工程 机器学习 软件开发 集合(抽象数据类型)
作者
Xiao Cheng,Haoyu Wang,Jiayi Hua,Guoai Xu,Yulei Sui
出处
期刊:ACM Transactions on Software Engineering and Methodology [Association for Computing Machinery]
卷期号:30 (3): 1-33 被引量:201
标识
DOI:10.1145/3436877
摘要

Static bug detection has shown its effectiveness in detecting well-defined memory errors, e.g., memory leaks, buffer overflows, and null dereference. However, modern software systems have a wide variety of vulnerabilities. These vulnerabilities are extremely complicated with sophisticated programming logic, and these bugs are often caused by different bad programming practices, challenging existing bug detection solutions. It is hard and labor-intensive to develop precise and efficient static analysis solutions for different types of vulnerabilities, particularly for those that may not have a clear specification as the traditional well-defined vulnerabilities. This article presents D eep W ukong , a new deep-learning-based embedding approach to static detection of software vulnerabilities for C/C++ programs. Our approach makes a new attempt by leveraging advanced recent graph neural networks to embed code fragments in a compact and low-dimensional representation, producing a new code representation that preserves high-level programming logic (in the form of control- and data-flows) together with the natural language information of a program. Our evaluation studies the top 10 most common C/C++ vulnerabilities during the past 3 years. We have conducted our experiments using 105,428 real-world programs by comparing our approach with four well-known traditional static vulnerability detectors and three state-of-the-art deep-learning-based approaches. The experimental results demonstrate the effectiveness of our research and have shed light on the promising direction of combining program analysis with deep learning techniques to address the general static code analysis challenges.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
5秒前
16秒前
20秒前
顾矜应助Jenny采纳,获得10
22秒前
完美世界应助yunshui采纳,获得10
24秒前
alter_mu发布了新的文献求助10
25秒前
天凉王破完成签到 ,获得积分10
31秒前
34秒前
41秒前
yunshui发布了新的文献求助10
41秒前
Timelapse应助科研通管家采纳,获得10
44秒前
59秒前
1分钟前
1分钟前
啦啦啦发布了新的文献求助10
1分钟前
ding应助若宫伊芙采纳,获得30
1分钟前
1分钟前
研友_8WbP4Z发布了新的文献求助10
1分钟前
啦啦啦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
lyw发布了新的文献求助10
1分钟前
1分钟前
啦啦啦啦发布了新的文献求助10
2分钟前
2分钟前
平常囧完成签到,获得积分10
2分钟前
若宫伊芙发布了新的文献求助30
2分钟前
2分钟前
2分钟前
Jenny发布了新的文献求助10
2分钟前
田様应助小飞鼠爱丽丝采纳,获得10
2分钟前
景清发布了新的文献求助10
2分钟前
我是老大应助科研通管家采纳,获得10
2分钟前
FashionBoy应助科研通管家采纳,获得10
2分钟前
ZanE完成签到,获得积分10
2分钟前
科目三应助简单的银耳汤采纳,获得10
2分钟前
CJH104完成签到 ,获得积分10
2分钟前
景清完成签到,获得积分10
2分钟前
义气的元绿完成签到,获得积分10
3分钟前
粗暴的坤发布了新的文献求助10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5788463
求助须知:如何正确求助?哪些是违规求助? 5707949
关于积分的说明 15473556
捐赠科研通 4916510
什么是DOI,文献DOI怎么找? 2646405
邀请新用户注册赠送积分活动 1594077
关于科研通互助平台的介绍 1548491