[A heart sound classification method based on joint decision of extreme gradient boosting and deep neural network].

计算机科学 Mel倒谱 卷积神经网络 人工智能 模式识别(心理学) 人工神经网络 Boosting(机器学习) 梯度升压 分类器(UML) 二元分类 特征提取 支持向量机 倒谱 分割 随机森林
作者
Zichao Wang,Yanrui Jin,Liqun Zhao,Chengliang Liu
出处
期刊:PubMed 卷期号:38 (1): 10-20 被引量:4
标识
DOI:10.7507/1001-5515.202006025
摘要

Heart sound is one of the common medical signals for diagnosing cardiovascular diseases. This paper studies the binary classification between normal or abnormal heart sounds, and proposes a heart sound classification algorithm based on the joint decision of extreme gradient boosting (XGBoost) and deep neural network, achieving a further improvement in feature extraction and model accuracy. First, the preprocessed heart sound recordings are segmented into four status, and five categories of features are extracted from the signals based on segmentation. The first four categories of features are sieved through recursive feature elimination, which is used as the input of the XGBoost classifier. The last category is the Mel-frequency cepstral coefficient (MFCC), which is used as the input of long short-term memory network (LSTM). Considering the imbalance of the data set, these two classifiers are both improved with weights. Finally, the heterogeneous integrated decision method is adopted to obtain the prediction. The algorithm was applied to the open heart sound database of the PhysioNet Computing in Cardiology(CINC) Challenge in 2016 on the PhysioNet website, to test the sensitivity, specificity, modified accuracy and F score. The results were 93%, 89.4%, 91.2% and 91.3% respectively. Compared with the results of machine learning, convolutional neural networks (CNN) and other methods used by other researchers, the accuracy and sensibility have been obviously improved, which proves that the method in this paper could effectively improve the accuracy of heart sound signal classification, and has great potential in the clinical auxiliary diagnosis application of some cardiovascular diseases.心音是诊断心血管疾病常用的医学信号之一。本文对心音正常/异常的二分类问题进行了研究,提出了一种基于极限梯度提升(XGBoost)和深度神经网络共同决策的心音分类算法,实现了对特征的选择和模型准确率的进一步提升。首先,本文对预处理后的心音信号进行心音分割,在此基础上提取了 5 个大类的特征,前 4 类特征采用递归特征消除法进行特征选择,作为 XGBoost 分类器的输入,最后一类为梅尔频率倒谱系数(MFCC),作为长短时记忆网络(LSTM)的输入。考虑到数据集的不平衡性,本文在两种分类器中皆使用了加权改进的方法。最后采用异质集成决策方法得到预测结果。将本文所提心音分类算法应用于 PhysioNet 网站在 2016 年发起的 PhysioNet 心脏病学挑战赛(CINC)所用公开心音数据库,以测试灵敏度、特异性、修正后的准确率以及 F 得分,结果分别为 93%、89.4%、91.2%、91.3%,通过与其他研究者应用机器学习、卷积神经网络(CNN)等方法的结果比较,在准确率和灵敏度上有明显提高,证明了本文方法能有效地提高心音信号分类的准确性,在部分心血管疾病的临床辅助诊断应用中有很大的潜力。.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI6应助正函数采纳,获得10
1秒前
3秒前
吃猫的鱼发布了新的文献求助10
4秒前
5秒前
风色幻想完成签到,获得积分10
6秒前
8秒前
桐桐应助科研通管家采纳,获得10
9秒前
爆米花应助科研通管家采纳,获得10
9秒前
Owen应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得10
9秒前
9秒前
Ava应助张lf采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得10
9秒前
搜集达人应助科研通管家采纳,获得10
9秒前
所所应助科研通管家采纳,获得10
9秒前
慕青应助科研通管家采纳,获得10
9秒前
传奇3应助木子李采纳,获得10
9秒前
我是老大应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得50
10秒前
wanci应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
10秒前
11秒前
春风失意完成签到,获得积分10
11秒前
lululu完成签到 ,获得积分10
11秒前
所所应助负责惊蛰采纳,获得10
13秒前
zchen发布了新的文献求助10
14秒前
邹家园发布了新的文献求助10
15秒前
15秒前
zhang完成签到 ,获得积分10
18秒前
18秒前
leibaozun发布了新的文献求助10
18秒前
柴郡喵完成签到,获得积分10
20秒前
20秒前
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
The Handbook of Communication Skills 500
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
Educational Research: Planning, Conducting, and Evaluating Quantitative and Qualitative Research 460
Representations of the Orient in Western Music: Violence and Sensuality 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4799450
求助须知:如何正确求助?哪些是违规求助? 4118655
关于积分的说明 12741601
捐赠科研通 3849411
什么是DOI,文献DOI怎么找? 2120998
邀请新用户注册赠送积分活动 1143053
关于科研通互助平台的介绍 1032541