Physics-informed machine learning

计算机科学 人工智能 机器学习 物理定律 离散化 多物理 人工神经网络 推论 领域(数学) 核方法 理论计算机科学 深度学习 数学 支持向量机 有限元法 数学分析 哲学 物理 认识论 纯数学 热力学
作者
George Em Karniadakis,Ioannis G. Kevrekidis,Lu Lu,Paris Perdikaris,Sifan Wang,Yang Liu
出处
期刊:Nature Reviews Physics [Springer Nature]
卷期号:3 (6): 422-440 被引量:1930
标识
DOI:10.1038/s42254-021-00314-5
摘要

Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems. The rapidly developing field of physics-informed learning integrates data and mathematical models seamlessly, enabling accurate inference of realistic and high-dimensional multiphysics problems. This Review discusses the methodology and provides diverse examples and an outlook for further developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
头头是道发布了新的文献求助10
2秒前
研友_1066发布了新的文献求助10
5秒前
5秒前
rainbow5432完成签到 ,获得积分10
6秒前
领导范儿应助阔达的扬采纳,获得10
7秒前
liuxl完成签到,获得积分10
8秒前
姜子骞完成签到,获得积分10
8秒前
Maestro_S发布了新的文献求助200
10秒前
可爱的函函应助好好干活采纳,获得10
10秒前
无花果应助Vine采纳,获得10
10秒前
研友_1066完成签到,获得积分10
11秒前
xxm0310完成签到,获得积分10
12秒前
14秒前
joyce930728完成签到,获得积分10
15秒前
Jo完成签到,获得积分10
17秒前
玉崟完成签到 ,获得积分10
18秒前
lily完成签到,获得积分10
19秒前
Hello应助大牛采纳,获得10
25秒前
25秒前
吴娇娇发布了新的文献求助10
26秒前
王瑜完成签到,获得积分10
28秒前
Hello应助青木蓝采纳,获得10
28秒前
28秒前
eli完成签到,获得积分10
30秒前
FashionBoy应助头头是道采纳,获得10
31秒前
cfyoung发布了新的文献求助10
31秒前
Mere完成签到,获得积分10
32秒前
Rikuya发布了新的文献求助10
32秒前
Kevin Li发布了新的文献求助10
32秒前
李健的小迷弟应助堪曼凝采纳,获得10
34秒前
Rikuya完成签到,获得积分20
36秒前
36秒前
Cyrilla完成签到,获得积分10
37秒前
Exc完成签到,获得积分10
40秒前
姜子骞发布了新的文献求助100
43秒前
阔达的扬发布了新的文献求助10
44秒前
背后的秋柳完成签到 ,获得积分10
45秒前
积木完成签到 ,获得积分10
48秒前
阿宝完成签到 ,获得积分10
50秒前
53秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Teaching Social and Emotional Learning in Physical Education 900
Edestus (Chondrichthyes, Elasmobranchii) from the Upper Carboniferous of Xinjiang, China 500
Chinese-English Translation Lexicon Version 3.0 500
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
マンネンタケ科植物由来メロテルペノイド類の網羅的全合成/Collective Synthesis of Meroterpenoids Derived from Ganoderma Family 500
[Lambert-Eaton syndrome without calcium channel autoantibodies] 440
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2381975
求助须知:如何正确求助?哪些是违规求助? 2089141
关于积分的说明 5248482
捐赠科研通 1815961
什么是DOI,文献DOI怎么找? 906050
版权声明 558878
科研通“疑难数据库(出版商)”最低求助积分说明 483792