Physics-informed machine learning

计算机科学 人工智能 机器学习 物理定律 离散化 多物理 人工神经网络 推论 领域(数学) 核方法 理论计算机科学 深度学习 数学 支持向量机 有限元法 数学分析 哲学 物理 认识论 纯数学 热力学
作者
George Em Karniadakis,Ioannis G. Kevrekidis,Lu Lu,Paris Perdikaris,Sifan Wang,Liu Yang
出处
期刊:Nature Reviews Physics [Nature Portfolio]
卷期号:3 (6): 422-440 被引量:3314
标识
DOI:10.1038/s42254-021-00314-5
摘要

Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems. The rapidly developing field of physics-informed learning integrates data and mathematical models seamlessly, enabling accurate inference of realistic and high-dimensional multiphysics problems. This Review discusses the methodology and provides diverse examples and an outlook for further developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
岱山完成签到,获得积分10
刚刚
思源应助雾失楼台采纳,获得10
1秒前
执着的酒窝完成签到,获得积分10
4秒前
lili完成签到,获得积分20
4秒前
GAS发布了新的文献求助10
5秒前
5秒前
5秒前
鱼茫发布了新的文献求助10
7秒前
h41692011发布了新的文献求助10
8秒前
8秒前
9秒前
pumpkin完成签到 ,获得积分10
9秒前
corbyn发布了新的文献求助10
9秒前
orixero应助魔幻的紊采纳,获得10
13秒前
无花果应助zzz采纳,获得10
14秒前
汉堡包应助木木三采纳,获得10
14秒前
隐形曼青应助是小越啊采纳,获得10
15秒前
雾失楼台发布了新的文献求助10
15秒前
15秒前
17秒前
20秒前
20秒前
20秒前
路过发布了新的文献求助10
20秒前
lll发布了新的文献求助10
21秒前
Benny完成签到,获得积分10
22秒前
Rand完成签到,获得积分10
22秒前
再睡一夏完成签到 ,获得积分10
23秒前
咖啡先生发布了新的文献求助10
23秒前
富二蛋发布了新的文献求助10
23秒前
科研通AI5应助dl采纳,获得10
24秒前
HEAUBOOK应助hkh采纳,获得10
24秒前
稳重奇异果应助hkh采纳,获得10
25秒前
科研通AI2S应助hkh采纳,获得10
25秒前
稳重奇异果应助hkh采纳,获得10
25秒前
稳重奇异果应助hkh采纳,获得10
25秒前
科研通AI2S应助hkh采纳,获得10
25秒前
HEAUBOOK应助hkh采纳,获得10
25秒前
科研通AI2S应助hkh采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776768
求助须知:如何正确求助?哪些是违规求助? 3322170
关于积分的说明 10209047
捐赠科研通 3037424
什么是DOI,文献DOI怎么找? 1666679
邀请新用户注册赠送积分活动 797625
科研通“疑难数据库(出版商)”最低求助积分说明 757921