Physics-informed machine learning

计算机科学 人工智能 机器学习 物理定律 离散化 多物理 人工神经网络 推论 领域(数学) 核方法 理论计算机科学 深度学习 数学 支持向量机 有限元法 纯数学 热力学 数学分析 哲学 物理 认识论
作者
George Em Karniadakis,Ioannis G. Kevrekidis,Lu Lu,Paris Perdikaris,Sifan Wang,Liu Yang
出处
期刊:Nature Reviews Physics [Nature Portfolio]
卷期号:3 (6): 422-440 被引量:3780
标识
DOI:10.1038/s42254-021-00314-5
摘要

Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems. The rapidly developing field of physics-informed learning integrates data and mathematical models seamlessly, enabling accurate inference of realistic and high-dimensional multiphysics problems. This Review discusses the methodology and provides diverse examples and an outlook for further developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助谦让的凤灵采纳,获得10
1秒前
1秒前
脑洞疼应助默默小鸽子采纳,获得10
2秒前
sun完成签到 ,获得积分10
3秒前
文艺稚晴发布了新的文献求助10
4秒前
6秒前
杂面饼子完成签到,获得积分20
6秒前
浅浪应助科研通管家采纳,获得10
6秒前
6秒前
JamesPei应助科研通管家采纳,获得10
7秒前
ED应助科研通管家采纳,获得10
7秒前
Neo应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
科研通AI5应助科研通管家采纳,获得10
7秒前
小花排草应助科研通管家采纳,获得30
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
机灵柚子应助科研通管家采纳,获得10
7秒前
7秒前
隐形曼青应助科研通管家采纳,获得30
7秒前
脑洞疼应助科研通管家采纳,获得10
7秒前
华仔应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
7秒前
杂面饼子发布了新的文献求助10
9秒前
10秒前
11秒前
hd发布了新的文献求助10
11秒前
所所应助研友_LB3mkn采纳,获得10
12秒前
13秒前
13秒前
老豆芽24完成签到,获得积分10
14秒前
14秒前
文艺稚晴完成签到 ,获得积分10
14秒前
15秒前
18秒前
大气乐儿发布了新的文献求助10
18秒前
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
2025-2030年中国消毒剂行业市场分析及发展前景预测报告 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4154217
求助须知:如何正确求助?哪些是违规求助? 3690066
关于积分的说明 11656614
捐赠科研通 3382314
什么是DOI,文献DOI怎么找? 1856062
邀请新用户注册赠送积分活动 917672
科研通“疑难数据库(出版商)”最低求助积分说明 831094