Physics-informed machine learning

计算机科学 人工智能 机器学习 物理定律 离散化 多物理 人工神经网络 推论 领域(数学) 核方法 理论计算机科学 深度学习 数学 支持向量机 有限元法 纯数学 热力学 数学分析 哲学 物理 认识论
作者
George Em Karniadakis,Ioannis G. Kevrekidis,Lu Lu,Paris Perdikaris,Sifan Wang,Liu Yang
出处
期刊:Nature Reviews Physics [Nature Portfolio]
卷期号:3 (6): 422-440 被引量:4195
标识
DOI:10.1038/s42254-021-00314-5
摘要

Despite great progress in simulating multiphysics problems using the numerical discretization of partial differential equations (PDEs), one still cannot seamlessly incorporate noisy data into existing algorithms, mesh generation remains complex, and high-dimensional problems governed by parameterized PDEs cannot be tackled. Moreover, solving inverse problems with hidden physics is often prohibitively expensive and requires different formulations and elaborate computer codes. Machine learning has emerged as a promising alternative, but training deep neural networks requires big data, not always available for scientific problems. Instead, such networks can be trained from additional information obtained by enforcing the physical laws (for example, at random points in the continuous space-time domain). Such physics-informed learning integrates (noisy) data and mathematical models, and implements them through neural networks or other kernel-based regression networks. Moreover, it may be possible to design specialized network architectures that automatically satisfy some of the physical invariants for better accuracy, faster training and improved generalization. Here, we review some of the prevailing trends in embedding physics into machine learning, present some of the current capabilities and limitations and discuss diverse applications of physics-informed learning both for forward and inverse problems, including discovering hidden physics and tackling high-dimensional problems. The rapidly developing field of physics-informed learning integrates data and mathematical models seamlessly, enabling accurate inference of realistic and high-dimensional multiphysics problems. This Review discusses the methodology and provides diverse examples and an outlook for further developments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
奋斗忆南完成签到 ,获得积分20
1秒前
Echo完成签到,获得积分10
1秒前
wangy发布了新的文献求助10
3秒前
3秒前
6秒前
6秒前
汉堡包应助蚂蚁的奋斗采纳,获得10
6秒前
徐海浪发布了新的文献求助10
6秒前
7秒前
7秒前
唐俊杰完成签到,获得积分10
8秒前
8秒前
刻苦的糖豆完成签到,获得积分10
9秒前
完美世界应助枣树先生采纳,获得10
9秒前
miaolingcool发布了新的文献求助10
11秒前
111完成签到,获得积分10
12秒前
aaaaaa发布了新的文献求助10
12秒前
12秒前
ZZH发布了新的文献求助10
13秒前
14秒前
Nnaao发布了新的文献求助10
14秒前
自由蓉发布了新的文献求助10
15秒前
15秒前
15秒前
17秒前
wangy完成签到,获得积分10
19秒前
枣树先生发布了新的文献求助10
19秒前
19秒前
20秒前
科研微微发布了新的文献求助10
21秒前
ZZH完成签到,获得积分10
21秒前
一杯沧海完成签到 ,获得积分10
21秒前
23秒前
ZSH驳回了bkagyin应助
23秒前
鳗鱼如松完成签到,获得积分10
23秒前
ausb给ausb的求助进行了留言
23秒前
vera发布了新的文献求助10
26秒前
复杂惜霜完成签到,获得积分20
30秒前
自由蓉完成签到,获得积分10
31秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5207577
求助须知:如何正确求助?哪些是违规求助? 4385457
关于积分的说明 13656909
捐赠科研通 4244029
什么是DOI,文献DOI怎么找? 2328560
邀请新用户注册赠送积分活动 1326245
关于科研通互助平台的介绍 1278450