亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Assessment of Axillary Lymph Nodes for Metastasis on Ultrasound Using Artificial Intelligence

腋窝淋巴结 超声波 医学 预测值 接收机工作特性 活检 淋巴 放射科 计算机科学 转移 癌症 人工智能 病理 内科学
作者
Aylin Tahmasebi,Enze Qu,Alexander Sevrukov,Ji‐Bin Liu,Shuo Wang,Andrej Lyshchik,Joshua Yu,John R. Eisenbrey
出处
期刊:Ultrasonic Imaging [SAGE Publishing]
卷期号:43 (6): 329-336 被引量:19
标识
DOI:10.1177/01617346211035315
摘要

The purpose of this study was to evaluate an artificial intelligence (AI) system for the classification of axillary lymph nodes on ultrasound compared to radiologists. Ultrasound images of 317 axillary lymph nodes from patients referred for ultrasound guided fine needle aspiration or core needle biopsy and corresponding pathology findings were collected. Lymph nodes were classified into benign and malignant groups with histopathological result serving as the reference. Google Cloud AutoML Vision (Mountain View, CA) was used for AI image classification. Three experienced radiologists also classified the images and gave a level of suspicion score (1–5). To test the accuracy of AI, an external testing dataset of 64 images from 64 independent patients was evaluated by three AI models and the three readers. The diagnostic performance of AI and the humans were then quantified using receiver operating characteristics curves. In the complete set of 317 images, AutoML achieved a sensitivity of 77.1%, positive predictive value (PPV) of 77.1%, and an area under the precision recall curve of 0.78, while the three radiologists showed a sensitivity of 87.8% ± 8.5%, specificity of 50.3% ± 16.4%, PPV of 61.1% ± 5.4%, negative predictive value (NPV) of 84.1% ± 6.6%, and accuracy of 67.7% ± 5.7%. In the three external independent test sets, AI and human readers achieved sensitivity of 74.0% ± 0.14% versus 89.9% ± 0.06% ( p = .25), specificity of 64.4% ± 0.11% versus 50.1 ± 0.20% ( p = .22), PPV of 68.3% ± 0.04% versus 65.4 ± 0.07% ( p = .50), NPV of 72.6% ± 0.11% versus 82.1% ± 0.08% ( p = .33), and accuracy of 69.5% ± 0.06% versus 70.1% ± 0.07% ( p = .90), respectively. These preliminary results indicate AI has comparable performance to trained radiologists and could be used to predict the presence of metastasis in ultrasound images of axillary lymph nodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助十三采纳,获得10
19秒前
小鱼女侠完成签到 ,获得积分10
24秒前
Yoanna应助科研通管家采纳,获得10
1分钟前
Yoanna应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
NexusExplorer应助认真的善若采纳,获得10
1分钟前
Yini应助你好采纳,获得10
1分钟前
2分钟前
完美世界应助左白易采纳,获得10
2分钟前
slf完成签到 ,获得积分10
2分钟前
2分钟前
左白易发布了新的文献求助10
2分钟前
Yoanna应助科研通管家采纳,获得10
3分钟前
Yoanna应助科研通管家采纳,获得10
3分钟前
爆米花应助左白易采纳,获得10
4分钟前
4分钟前
左白易发布了新的文献求助10
4分钟前
左白易完成签到,获得积分10
4分钟前
陆上飞完成签到,获得积分10
4分钟前
胖小羊完成签到 ,获得积分10
4分钟前
FashionBoy应助科研通管家采纳,获得10
5分钟前
我是老大应助科研通管家采纳,获得10
5分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
Yoanna应助科研通管家采纳,获得10
5分钟前
5分钟前
量子星尘发布了新的文献求助30
5分钟前
大生蚝完成签到,获得积分10
5分钟前
阿斯戳完成签到,获得积分20
6分钟前
6分钟前
斯文败类应助阿斯戳采纳,获得10
6分钟前
6分钟前
Okypete发布了新的文献求助10
6分钟前
脑洞疼应助闪闪翼采纳,获得10
6分钟前
彩虹儿完成签到,获得积分0
6分钟前
Yoanna应助科研通管家采纳,获得10
7分钟前
Yini应助ghost采纳,获得20
7分钟前
7分钟前
阿斯戳发布了新的文献求助10
7分钟前
慕青应助阿斯戳采纳,获得10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cancer Systems Biology: Translational Mathematical Oncology 1000
Binary Alloy Phase Diagrams, 2nd Edition 1000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4957940
求助须知:如何正确求助?哪些是违规求助? 4219168
关于积分的说明 13133252
捐赠科研通 4002241
什么是DOI,文献DOI怎么找? 2190252
邀请新用户注册赠送积分活动 1205006
关于科研通互助平台的介绍 1116625