Noise Reduction Method of Φ-OTDR System Based on EMD-TFPF Algorithm

降噪 还原(数学) 噪音(视频) 计算机科学 算法 噪声测量 光时域反射计 电子工程 人工智能 数学 光纤 工程类 电信 光纤传感器 图像(数学) 渐变折射率纤维 几何学
作者
Yu-Xin Bai,Tingting Lin,Zhicheng Zhong
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:21 (21): 24084-24089 被引量:14
标识
DOI:10.1109/jsen.2021.3107039
摘要

The phase-sensitive optical time domain reflectometry ( $\Phi $ -OTDR) system has been gradually applied to vertical seismic profile exploration due to its excellent anti-electromagnetic interference, extremely high resolution and sensitivity, and wide detection range. However, the actual data is often disturbed by random noise, which seriously affects the system's ability to recognize low-frequency disturbances. In order to suppress the background noise and improve the signal-to-noise ratio (SNR), a fusion noise reduction method based on empirical mode decomposition and time-frequency peak filtering (EMD-TFPF) algorithm is studied and introduced. In terms of seismic exploration data processing, the algorithm has good denoising performance. Using the $\Phi $ -OTDR system based on optical synchronous reference heterodyne detection as the experimental platform, the EMD-TFPF noise reduction algorithm is applied to the position information and compared with the VSS-NLMS, VMD-NWT and EMD-soft methods. Experimental results show that under the conditions of 0.1 Hz and 5 V vibration interference, the EMD-TFPF method improves the SNR to 37.6 dB, which is much higher than the other three noise reduction algorithms. In addition, this method broadens the low-frequency response range of the system to 10 −5 Hz. The improvement of the system's ability to recognize low-frequency disturbance events will undoubtedly accelerate the practical process of the $\Phi $ -OTDR system in seismic exploration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
赘婿应助joruruo采纳,获得10
1秒前
小羊咩咩发布了新的文献求助10
1秒前
夹心完成签到 ,获得积分20
5秒前
6秒前
Tristan完成签到 ,获得积分10
6秒前
7秒前
123完成签到,获得积分10
7秒前
7秒前
17871635733完成签到,获得积分10
8秒前
hang完成签到,获得积分10
9秒前
9秒前
10秒前
碧蓝的凝竹完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
forfile发布了新的文献求助10
12秒前
Finen完成签到,获得积分10
13秒前
13秒前
13秒前
傲娇的曼香完成签到,获得积分10
13秒前
谨慎鞅完成签到,获得积分10
14秒前
zkxin完成签到,获得积分10
15秒前
咪吖发布了新的文献求助10
15秒前
Finen发布了新的文献求助10
16秒前
大分子发布了新的文献求助10
16秒前
zkxin发布了新的文献求助10
17秒前
18秒前
一号完成签到,获得积分10
19秒前
19秒前
LQQy27完成签到,获得积分10
19秒前
20秒前
感动书竹完成签到 ,获得积分10
22秒前
3565发布了新的文献求助10
22秒前
Alex给Xiaohu的求助进行了留言
23秒前
勤劳的雁凡完成签到,获得积分10
23秒前
小赵发布了新的文献求助30
24秒前
zy完成签到,获得积分10
24秒前
24秒前
搜集达人应助forfile采纳,获得10
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3787371
求助须知:如何正确求助?哪些是违规求助? 3332962
关于积分的说明 10258543
捐赠科研通 3048417
什么是DOI,文献DOI怎么找? 1673109
邀请新用户注册赠送积分活动 801623
科研通“疑难数据库(出版商)”最低求助积分说明 760308