Neuromorphic System Using Memcapacitors and Autonomous Local Learning

神经形态工程学 计算机科学 人工神经网络 感知器 电容 冯·诺依曼建筑 电压 记忆电阻器 电子线路 电子工程 人工智能 电气工程 工程类 电极 物理 操作系统 量子力学
作者
Mutsumi Kimura,Yuma Ishisaki,Yuta Miyabe,H Yoshida,Isato Ogawa,Tomoharu Yokoyama,Ken‐ichi Haga,Eisuke Tokumitsu,Yasuhiko Nakashima
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:34 (5): 2366-2373 被引量:17
标识
DOI:10.1109/tnnls.2021.3106566
摘要

Artificial intelligence is used for various applications and is promising as an indispensable infrastructure in future societies. Neural networks are representative technologies that imitate human brains and exhibit various advantages. However, the size is bulky, the power is huge, and some advantages are not demonstrated because they are executed on Neumann-type computers. Neuromorphic systems are biomimetic systems from the hardware level to implement neuron and synapse elements, and the size is compact, the power is low, and the operation is robust. However, because the conventional ones are not composed of fully optimized hardware, the power is not yet minimal, and extra control circuits must be used. In this article, we developed a neuromorphic system using memcapacitors and autonomous local learning. By using memcapacitors, the power can be minimal, and by using autonomous local learning, the control circuits to handle the synapse elements can be deleted. First, the memcapacitors are completed in a cross-bar array, where the ferroelectric layers are sandwiched between the horizontal and perpendicular electrodes. The polarization and capacitance exhibit hysteresis due to the dielectric polarization. Next, autonomous local learning is introduced as follows. During the training phase, associative patterns to be memorized are directly sent, relatively high voltages are applied, and dielectric polarizations are induced. During the operation phase, relatively low voltages are applied, and input signals are weighted with the capacitances of the memcapacitors, summed, and transferred as the output signals. Finally, the experimental system is set up, and the experimental results are acquired. The memorized patterns during the training phase, distorted patterns as the input signals during the operation phase, and retrieved patterns as the output signals in the operation phase are shown. Researchers found that the retrieved patterns are completely the same as the memorized patterns. This means that the neuromorphic system works as an associative memory.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助jarky采纳,获得30
刚刚
moon发布了新的文献求助10
刚刚
泡泡奶熙完成签到 ,获得积分20
刚刚
1秒前
2秒前
FashionBoy应助余一采纳,获得10
2秒前
Amentiraz发布了新的文献求助10
2秒前
YYJ给YYJ的求助进行了留言
3秒前
勤苦的牛马应助糊糊采纳,获得10
3秒前
3秒前
迪迪完成签到,获得积分10
3秒前
4秒前
4秒前
王一梦发布了新的文献求助10
4秒前
风中志泽完成签到,获得积分20
4秒前
王大锤2015发布了新的文献求助10
4秒前
wise111发布了新的文献求助10
4秒前
5秒前
李爱国应助哈哈哈采纳,获得10
6秒前
丘比特应助六月小刘采纳,获得10
6秒前
6秒前
mm完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
窗外的白云完成签到 ,获得积分10
8秒前
NaNA发布了新的文献求助10
8秒前
桐桐应助韩梅采纳,获得10
8秒前
Reef发布了新的文献求助10
8秒前
核桃应助terrell采纳,获得10
8秒前
陶醉发布了新的文献求助10
8秒前
8秒前
9秒前
李健应助LH采纳,获得30
9秒前
李玉发布了新的文献求助10
9秒前
钟哈哈发布了新的文献求助10
10秒前
dadigege完成签到,获得积分10
10秒前
SciGPT应助丫丫采纳,获得10
10秒前
10秒前
随缘随缘完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
A new approach to VOF-based interface capturing methods for incompressible and compressible flow 800
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5248329
求助须知:如何正确求助?哪些是违规求助? 4413211
关于积分的说明 13736349
捐赠科研通 4284234
什么是DOI,文献DOI怎么找? 2350840
邀请新用户注册赠送积分活动 1347848
关于科研通互助平台的介绍 1307366