Towards adaptive and finer rehabilitation assessment: A learning framework for kinematic evaluation of upper limb rehabilitation on an Armeo Spring exoskeleton

运动学 判别式 康复 过程(计算) 计算机科学 概率逻辑 外骨骼 人工智能 物理医学与康复 比例(比率) 机器学习
作者
Yeser Meziani,Yann Morère,Amine Hadj-Abdelkader,Mohammed Benmansour,Guy Bourhis
出处
期刊:Control Engineering Practice [Elsevier BV]
卷期号:111: 104804- 被引量:2
标识
DOI:10.1016/j.conengprac.2021.104804
摘要

Abstract Providing specialized rehabilitation and tailoring the training process for patient’s needs and according to recovery potentials has gained importance. To satisfy this need, a dynamic assessment of the performance of the recovery process is required. Assessing rehabilitation for the upper limb is often carried out with clinical subjective scales that do not satisfy these requirements. The use of technologies introduced several sensors into the devices used for rehabilitation and permitted the rise of kinematic assessments. Kinematic measures provide an objective scale to follow up recovery during upper limb rehabilitation. The kinematics are still raw evaluations since they present insignificant effects if studied over short periods or on heterogeneous samples. We propose a framework for modeling the trajectories as a means of encoding the specificity of the movement at every stage. The new technique permits detecting significant differences as soon as three training sessions became available. We adopt an expectation–maximization algorithm and an optimization technique to encode the trajectories and the transition model from the acquired data. The framework enables us to encode in a Bayesian sense the observations from the patient and define six metrics to follow up on the progress of the movement quality. Statistical analysis of the results proved that these metrics are effective in tracking the evolution of the recovery. The results also established a strong discriminative property. The proposed framework promises a finer scale of evaluation and extends the knowledge about kinematic assessment. This study’s findings suggest that adopting these new metrics can help achieve more individualized patient care. It additionally promises to limit the amount of data needed to detect a significant change.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿九发布了新的文献求助20
刚刚
害羞的墨镜完成签到,获得积分10
1秒前
漂亮的孤丹完成签到 ,获得积分10
1秒前
3秒前
3秒前
3秒前
烟花应助元靖采纳,获得10
6秒前
拉稀摆带完成签到 ,获得积分10
6秒前
打打应助wuwuwu采纳,获得10
6秒前
7秒前
谦让夜香发布了新的文献求助10
8秒前
Junsir发布了新的文献求助10
8秒前
Hello应助Gzz采纳,获得10
9秒前
9秒前
Akim应助科研通管家采纳,获得10
9秒前
香蕉觅云应助科研通管家采纳,获得10
10秒前
54545完成签到,获得积分10
10秒前
深情安青应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
今后应助科研通管家采纳,获得10
10秒前
小马甲应助科研通管家采纳,获得10
10秒前
chenmi应助科研通管家采纳,获得10
10秒前
10秒前
憨憨医生发布了新的文献求助10
10秒前
12秒前
14秒前
14秒前
求助完成签到,获得积分10
14秒前
yuanqi完成签到,获得积分10
14秒前
..完成签到,获得积分10
15秒前
wrb完成签到,获得积分20
16秒前
18秒前
david发布了新的文献求助10
18秒前
asdfasdfj发布了新的文献求助10
19秒前
..发布了新的文献求助10
19秒前
liuttinn完成签到,获得积分10
19秒前
Zoo应助憨憨医生采纳,获得100
20秒前
22秒前
23秒前
丘比特应助七木采纳,获得10
27秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Semantics for Latin: An Introduction 1099
醤油醸造の最新の技術と研究 1000
Plutonium Handbook 1000
Three plays : drama 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 640
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4114194
求助须知:如何正确求助?哪些是违规求助? 3652572
关于积分的说明 11566524
捐赠科研通 3356681
什么是DOI,文献DOI怎么找? 1843776
邀请新用户注册赠送积分活动 909730
科研通“疑难数据库(出版商)”最低求助积分说明 826492