Deep Learning–based Reconstruction for Lower-Dose Pediatric CT: Technical Principles, Image Characteristics, and Clinical Implementations

迭代重建 图像质量 人工智能 医学 图像噪声 卷积神经网络 噪音(视频) 图像处理 计算机视觉 计算机科学 图像(数学)
作者
Yasunori Nagayama,Daisuke Sakabe,Makoto Goto,Takafumi Emoto,Seitaro Oda,Takeshi Nakaura,Masafumi Kidoh,Hiroyuki Uetani,Yoshinori Funama,Toshinori Hirai
出处
期刊:Radiographics [Radiological Society of North America]
卷期号:41 (7): 1936-1953 被引量:79
标识
DOI:10.1148/rg.2021210105
摘要

Optimizing the CT acquisition parameters to obtain diagnostic image quality at the lowest possible radiation dose is crucial in the radiosensitive pediatric population. The image quality of low-dose CT can be severely degraded by increased image noise with filtered back projection (FBP) reconstruction. Iterative reconstruction (IR) techniques partially resolve the trade-off relationship between noise and radiation dose but still suffer from degraded noise texture and low-contrast detectability at considerably low-dose settings. Furthermore, sophisticated model-based IR usually requires a long reconstruction time, which restricts its clinical usability. With recent advances in artificial intelligence technology, deep learning-based reconstruction (DLR) has been introduced to overcome the limitations of the FBP and IR approaches and is currently available clinically. DLR incorporates convolutional neural networks-which comprise multiple layers of mathematical equations-into the image reconstruction process to reduce image noise, improve spatial resolution, and preserve preferable noise texture in the CT images. For DLR development, numerous network parameters are iteratively optimized through an extensive learning process to discriminate true attenuation from noise by using low-dose training and high-dose teaching image data. After rigorous validations of network generalizability, the DLR engine can be used to generate high-quality images from low-dose projection data in a short reconstruction time in a clinical environment. Application of the DLR technique allows substantial dose reduction in pediatric CT performed for various clinical indications while preserving the diagnostic image quality. The authors present an overview of the basic concept, technical principles, and image characteristics of DLR and its clinical feasibility for low-dose pediatric CT. ©RSNA, 2021.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
kslzf发布了新的文献求助10
1秒前
2秒前
晨子发布了新的文献求助10
2秒前
娟娟SCI完成签到 ,获得积分10
2秒前
iNk应助小翟采纳,获得10
2秒前
2秒前
田様应助zzj采纳,获得10
2秒前
杜本内完成签到,获得积分10
3秒前
5秒前
埋头赶路应助伶俐的亦玉采纳,获得10
6秒前
Dandelion完成签到,获得积分10
6秒前
cherry完成签到,获得积分10
6秒前
wanci应助不羁采纳,获得10
7秒前
8秒前
Lichenyi发布了新的文献求助10
9秒前
10秒前
10秒前
晨子完成签到,获得积分10
11秒前
11秒前
一个屁桃发布了新的文献求助10
11秒前
完美世界应助123采纳,获得10
13秒前
酷炫的爆米花完成签到,获得积分10
13秒前
溯溯完成签到 ,获得积分10
15秒前
科研通AI2S应助关耳采纳,获得10
16秒前
17秒前
17秒前
gnufgg完成签到,获得积分10
17秒前
19秒前
开开心心的开心完成签到,获得积分10
20秒前
lsy应助丸子采纳,获得10
20秒前
852应助nickel采纳,获得10
20秒前
21秒前
78888发布了新的文献求助10
22秒前
23秒前
香蕉觅云应助wxy采纳,获得10
23秒前
甜甜妙芙发布了新的文献求助10
24秒前
关耳完成签到,获得积分10
24秒前
小张同学发布了新的文献求助10
25秒前
核桃发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642956
求助须知:如何正确求助?哪些是违规求助? 4760206
关于积分的说明 15019456
捐赠科研通 4801457
什么是DOI,文献DOI怎么找? 2566751
邀请新用户注册赠送积分活动 1524614
关于科研通互助平台的介绍 1484236